Mutations

PSEN1 c.856+3089_943+467del (ΔE9)

Overview

Pathogenicity: Alzheimer's Disease : Not Classified, Spastic Paraparesis : Not Classified
ACMG/AMP Pathogenicity Criteria: PS3, PM1, PM2, PM4
Clinical Phenotype: Alzheimer's Disease, Dementia, Spastic Paraparesis
Reference Assembly: GRCh37/hg19
dbSNP ID: NA
Coding/Non-Coding: Both
DNA Change: Deletion
Expected RNA Consequence: Deletion
Expected Protein Consequence: Deletion
Reference Isoform: PSEN1 Isoform 1 (467 aa)
Genomic Region: Exon 9, Introns 8 and 9

Findings

This mutation is a 5.7 kb deletion that removes exon 9, as well as sequences from the 3’end of intron 8 and the 5’ end of intron 9 (Fukuda et al., 2023). It is one of several  mutations in PSEN1 that are notable for exclusion of exon 9, which are variously referred to as ΔE9, Δ9, delE9, or deltaE9. This particular mutation was identified in a 55-year-old Japanese woman with spasticity and dementia.  Her spastic symptoms started at age 45. MRI revealed a spinal cystic mass on her right side, but the mass remained stable in size and her symptoms progressed, involving both lower and upper limbs and both sides of her body. Cognitive impairment emerged one year after onset of motor symptoms.
The patient was diagnosed with complex hereditary spastic paraplegia with dementia or pure hereditary spastic paraplegia with Alzheimer’s disease. Of note, her father, who died at age 72, also developed an abnormal gait and cognitive impairment.

This deletion is absent from the gnomAD variant database (v2.1.1, Oct 2023).

Neuropathology
Neuropathological data are unavailable, but brain MRI of the proband showed slight atrophy, and SPECT indicated right-dominant bilateral hypoperfusion of the parietal lobes, precuneus, and posterior cingulate cortex (Fukuda et al., 2023).

Biological Effect
The biological effect of this specific variant is unknown, but many studies of other PSEN1 variants that result in the exclusion of exon 9 (denoted here as PSEN1ΔE9) provide insights as described below.

Multiple in vitro and in vivo assays have shown that PSEN1ΔE9 impairs endoproteolytic processing of PSEN1 (Thinakaran et al., 1996, Lee et al., 1997) and alters the production of Aβ42 and Aβ40 peptides resulting in an increased Aβ42/Aβ40 ratio (Borchelt et al., 1996, Steiner et al., 1999, Dumanchin et al., 2006; Kumar-Singh et al., 2006, Bentahir et al., 2006, Woodruff et al., 2013, Cacquevel et al., 2012, Sun et al., 2017). Moreover, studies surveying the production of Aβ peptides of different lengths have indicated that these mutations result in increased levels of longer Aβ peptides, and decreased levels of shorter peptides (Chávez-Gutiérrez et al., 2012; Svedružić et al., 2012; Kakuda et al., 2021). Chávez-Gutiérrez and colleagues proposed this is the result of impairment of the fourth γ-secretase cleavage in the two Aβ production lines that sequentially digest Aβ49 and Aβ48 into shorter peptides (Chávez-Gutiérrez et al., 2012).

More recently, three studies revealed PSEN1ΔE9 mutants  decrease the Aβ (37 + 38 + 40) / (42 + 43) ratio and the Aβ37/Aβ42 ratio, both of which reflect γ-processivity, compared with cells expressing wildtype PSEN1 (Apr 2022 news; Petit et al., 2022; Liu et al., 2022). The two ratios were reported to outperform the Aβ42/Aβ40 ratio as indicators of AD pathogenicity, with the former correlating with AD age at onset. Moreover, a follow-up study reported in a preprint, combined the Aβ (37 + 38 + 40) / (42 + 43) ratio with the commonly used Aβ42/Aβ40 ratio (a measure of the relative production of aggregation-prone Aβ) to yield a composite measure which reflects γ-secretase function as a percentage of wildtype activity (Schulz et al., 2023). This composite score (36.87 for PSEN1ΔE9) was strongly associated, not only with age at onset, but with biomarker and cognitive trajectories.

Exon 9 deletion mutations may also affect PSEN1 transcription. In a bacterial artificial chromosome (BAC)-based expression model, PSEN1ΔE9-expressing cells exhibited reduced PSEN1 gene expression and partial loss of function relative to cells expressing wild-type PSEN1 (Ahmadi et al., 2014).

The absence of exon 9 may impair Notch processing as well. Although one study found no effect of the mutation on this substrate (Chávez-Gutiérrez et al., 2012), others have reported impaired Notch S3 cleavage and corresponding alterations in the differentiation and self-renewal of neural progenitor cells in the adult mouse brain (Bentahir et al., 2006; Veeraraghavalu et al., 2010; May 2010 news).

PSEN1ΔE9 mutations have also been implicated in the disruption of several intracellular functions. For example, by lowering PIP2 levels, PSEN1ΔE9 appears to block a cation channel that mediates capacitive calcium entry (Landman et al., 2006; Dec 2006 news). In addition, impairments in endocytosis, cholesterol homeostasis, autophagy, and APP intracellular localization have been reported (Woodruff et al., 2016; Oct 2016 news; Cho et al., 2019; Oh and Chung, 2017). In addition, alterations in tight and adherens junction protein expression, as well as in efflux properties, were found in iPSC-derived brain endothelial cells, a model of blood-brain barrier function (Oikari et al., 2020).

Interestingly, PSEN1 was reported to play a key role in ApoE secretion and cytoplasmic localization. In experiments with PSEN-deficient fibroblasts, PSEN1ΔE9 transfection was less able to rescue these functions compared with transfection of wildtype PSEN1 (Islam et al., 2022).

PSEN1ΔE9 had little effect on microglia, a cell type that normally expresses very low levels of PSEN1, although it appeared to weaken the cells’ inflammatory response (Konttinen et al., 2019, Sep 2019 news).

Pathogenicity

Alzheimer's Disease : Not Classified*

*This variant fulfilled some ACMG-AMP criteria, but it is not classified by Alzforum because the AD diagnosis was uncertain, only one affected carrier has been reported, and the variant was absent from the gnomAD database. However, note that multiple mutations resulting in the same consequence (deletion of exon 9) are pathogenic.

This variant fulfilled the following criteria based on the ACMG/AMP guidelines. See a full list of the criteria in the Methods page.

PS3-S

Well-established in vitro or in vivo functional studies supportive of a damaging effect on the gene or gene product. c.856+3089_943+467del (ΔE9): Functional data derive from assays involving exon 9 deletion mutants, not necessarily this specific variant.

PM1-M

Located in a mutational hot spot and/or critical and well-established functional domain (e.g. active site of an enzyme) without benign variation.

PM2-M

Absent from controls (or at extremely low frequency if recessive) in Exome Sequencing Project, 1000 Genomes Project, or Exome Aggregation Consortium. *Alzforum uses the gnomAD variant database.

PM4-M

Protein length changes due to in-frame deletions/insertions in a non-repeat region or stop-loss variants.

Pathogenic (PS, PM, PP) Benign (BA, BS, BP)
Criteria Weighting Strong (-S) Moderate (-M) Supporting (-P) Supporting (-P) Strong (-S) Strongest (BA)

Last Updated: 13 Oct 2023

Comments

No Available Comments

Make a Comment

To make a comment you must login or register.

References

News Citations

  1. Ratio of Short to Long Aβ Peptides: Better Handle on Alzheimer's than Aβ42/40?
  2. Notch Your Average Joe—Grounds for PS1 Neurogenesis Inhibition?
  3. Beyond γ-Secretase: FAD Mutations Affect Calcium Channel via Lipid Messenger
  4. Cholesterol Trafficking Takes a Hit in Alzheimer’s Neurons
  5. Among AD Mutations, Only ApoE4 Seems to Hobble Microglia

Paper Citations

  1. . Long-read sequencing revealing intragenic deletions in exome-negative spastic paraplegias. J Hum Genet. 2023 Oct;68(10):689-697. Epub 2023 Jun 12 PubMed.
  2. . Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo. Neuron. 1996 Jul;17(1):181-90. PubMed.
  3. . Hyperaccumulation of FAD-linked presenilin 1 variants in vivo. Nat Med. 1997 Jul;3(7):756-60. PubMed.
  4. . Familial Alzheimer's disease-linked presenilin 1 variants elevate Abeta1-42/1-40 ratio in vitro and in vivo. Neuron. 1996 Nov;17(5):1005-13. PubMed.
  5. . The biological and pathological function of the presenilin-1 Deltaexon 9 mutation is independent of its defect to undergo proteolytic processing. J Biol Chem. 1999 Mar 19;274(12):7615-8. PubMed.
  6. . Biological effects of four PSEN1 gene mutations causing Alzheimer disease with spastic paraparesis and cotton wool plaques. Hum Mutat. 2006 Oct;27(10):1063. PubMed.
  7. . Mean age-of-onset of familial alzheimer disease caused by presenilin mutations correlates with both increased Abeta42 and decreased Abeta40. Hum Mutat. 2006 Jul;27(7):686-95. PubMed.
  8. . Presenilin clinical mutations can affect gamma-secretase activity by different mechanisms. J Neurochem. 2006 Feb;96(3):732-42. PubMed.
  9. . The presenilin-1 ΔE9 mutation results in reduced γ-secretase activity, but not total loss of PS1 function, in isogenic human stem cells. Cell Rep. 2013 Nov 27;5(4):974-85. Epub 2013 Nov 14 PubMed.
  10. . Alzheimer's disease-linked mutations in presenilin-1 result in a drastic loss of activity in purified γ-secretase complexes. PLoS One. 2012;7(4):e35133. PubMed.
  11. . Analysis of 138 pathogenic mutations in presenilin-1 on the in vitro production of Aβ42 and Aβ40 peptides by γ-secretase. Proc Natl Acad Sci U S A. 2017 Jan 24;114(4):E476-E485. Epub 2016 Dec 5 PubMed.
  12. . The mechanism of γ-Secretase dysfunction in familial Alzheimer disease. EMBO J. 2012 May 16;31(10):2261-74. Epub 2012 Apr 13 PubMed.
  13. . Modulation of γ-secretase activity by multiple enzyme-substrate interactions: implications in pathogenesis of Alzheimer's disease. PLoS One. 2012;7(3):e32293. PubMed.
  14. . Switched Aβ43 generation in familial Alzheimer's disease with presenilin 1 mutation. Transl Psychiatry. 2021 Nov 3;11(1):558. PubMed.
  15. . Aβ profiles generated by Alzheimer's disease causing PSEN1 variants determine the pathogenicity of the mutation and predict age at disease onset. Mol Psychiatry. 2022 Jun;27(6):2821-2832. Epub 2022 Apr 1 PubMed.
  16. . Identification of the Aβ37/42 peptide ratio in CSF as an improved Aβ biomarker for Alzheimer's disease. Alzheimers Dement. 2022 Mar 12; PubMed.
  17. . Functional variations in gamma-secretase activity are critical determinants of the clinical, biomarker, and cognitive progression of autosomal dominant Alzheimer's disease. 2023 Jul 25 10.1101/2023.07.04.547688 (version 2) bioRxiv.
  18. . Familial Alzheimer's disease coding mutations reduce Presenilin-1 expression in a novel genomic locus reporter model. Neurobiol Aging. 2014 Feb;35(2):443.e5-443.e16. PubMed.
  19. . Presenilin 1 mutants impair the self-renewal and differentiation of adult murine subventricular zone-neuronal progenitors via cell-autonomous mechanisms involving notch signaling. J Neurosci. 2010 May 19;30(20):6903-15. PubMed.
  20. . Presenilin mutations linked to familial Alzheimer's disease cause an imbalance in phosphatidylinositol 4,5-bisphosphate metabolism. Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19524-9. PubMed.
  21. . Defective Transcytosis of APP and Lipoproteins in Human iPSC-Derived Neurons with Familial Alzheimer's Disease Mutations. Cell Rep. 2016 Oct 11;17(3):759-773. PubMed.
  22. . Elevated cellular cholesterol in Familial Alzheimer's presenilin 1 mutation is associated with lipid raft localization of β-amyloid precursor protein. PLoS One. 2019;14(1):e0210535. Epub 2019 Jan 25 PubMed.
  23. . Activation of transient receptor potential melastatin 7 (TRPM7) channel increases basal autophagy and reduces amyloid β-peptide. Biochem Biophys Res Commun. 2017 Nov 4;493(1):494-499. Epub 2017 Sep 1 PubMed.
  24. . Altered Brain Endothelial Cell Phenotype from a Familial Alzheimer Mutation and Its Potential Implications for Amyloid Clearance and Drug Delivery. Stem Cell Reports. 2020 May 12;14(5):924-939. Epub 2020 Apr 9 PubMed.
  25. . Presenilin Is Essential for ApoE Secretion, a Novel Role of Presenilin Involved in Alzheimer's Disease Pathogenesis. J Neurosci. 2022 Feb 23;42(8):1574-1586. Epub 2022 Jan 5 PubMed.
  26. . PSEN1ΔE9, APPswe, and APOE4 Confer Disparate Phenotypes in Human iPSC-Derived Microglia. Stem Cell Reports. 2019 Oct 8;13(4):669-683. Epub 2019 Sep 12 PubMed.

Other Citations

  1. several

Further Reading

No Available Further Reading

Protein Diagram

Primary Papers

  1. . Long-read sequencing revealing intragenic deletions in exome-negative spastic paraplegias. J Hum Genet. 2023 Oct;68(10):689-697. Epub 2023 Jun 12 PubMed.

Disclaimer: Alzforum does not provide medical advice. The Content is for informational, educational, research and reference purposes only and is not intended to substitute for professional medical advice, diagnosis or treatment. Always seek advice from a qualified physician or health care professional about any medical concern, and do not disregard professional medical advice because of anything you may read on Alzforum.