A Novel Class of CNS Drugs Administered Hours Post-Injury Alters Pathology Progression and Improves Neurologic Outcomes in Diffuse Axonal Injury Models

Linda J. Van Eldik, PhD

Director, Sanders-Brown Center on Aging
Professor, Dept Anatomy & Neurobiology, University of KY, Lexington

Financial Disclosures: P.I. on funded research in drug discovery for CNS disorders. Northwestern University has filed intellectual property protection and licensed to industry therapeutic candidates
The Janus Face of Glial Activation

Healthy Brain

Neurodegenerative

Glia respond to stimuli by undergoing activation

Chronic, unregulated glia activation

Normally beneficial

Detrimental neuroinflammation
Therapeutic Goal: attenuate pathology progression by appropriate dosing with intracellular signal transduction targeted small molecules

Stressor (e.g., trauma, toxic Aβ)

- Excessive glia activation
- Injurious increases in cytokines (e.g., IL-1β, TNFα)

PKs

- microglia
- astrocyte
- neuron

Neuron/synaptic dysfunction

- synaptic dysfunction/neuronal death

Minokine Class (p38)

Minozac Class

DAPK inhibitors
A Staged, Recursive Discovery Engine for Novel, Bioavailable, CNS-penetrant, Stable, Candidate Drugs

I. Campaign/Molecule Design stage
- Design and chemical diversification of fragment or core scaffold
 - Includes pharmacoinformatics

II. In Vitro Activity Stage
- Single Molecular Target-Based Approach
- Phenotypic or Pathway-Based Approach
 - Concentration dependent, selective inhibition of activity
 - Enzyme Assays
 - Cell-Based Assays

III. Pharmacology Assessment Stage
- GMP scheme, Preclinical GLP, IND, FIH
- In vivo efficacy in animal models with targeted MOA
 - e.g., In vitro metabolic stability
 - CYP 2D6 status
 - Potential for Oral/CNS bioavailability
 - NOAEL

IV. In Vivo Efficacy Stage
- "GO"
- "NO GO"
- "GO"
- "NO GO"
Example Novel Candidate with Desired Properties: MW151

Compound is within multi-property range characteristic of successful drugs with high potential for BBB penetration and low potential for key ADMET liabilities.

Chico et al., 2009, Nature Rev Drug Discovery 8: 892; Hu et al., 2007, Bioorg Med Chem Lett 17: 414

- MW = 423.34
- Aqueous solubility >332 mg/ml
- pKa (potentiometric titration): 3.75 ± 0.06
- Experimental lipophilicity (octanol/water), LogP = 2.3
- Melting point >215°C
- Oxidative chemical stability:
 - 92% remaining-aqueous
 - 100% remaining-acidic
 - 74% remaining-basic
Potential Indications for MW151

Observation:
- Extensive animal studies and clinical observations suggest that up-regulated proinflammatory cytokine production contributes to neuropathological sequelae.

Question:
- Is MW151 effective in animal models of CNS disorders where proinflammatory cytokine up-regulation is a characteristic of disease progression?

Approach:
- Test efficacy in animal models using consideration of therapeutic time windows.
In vivo Efficacy Screen in AD Mouse Model
oral administration of MW151 attenuates human Aβ-induced brain injury

MW151 (2.5 mg/kg/day) or saline vehicle administered by oral gavage once daily for 2 weeks, once daily Y-maze for 10 days prior to sacrifice at day 60; cytokines and synaptic proteins measured in hippocampal extracts.

Hu et al., 2007, Bioorg Med Chem Lett 17: 414
Potential Indications for MW151

Observation:
- MW151 is efficacious in models of AD-relevant pathophysiology, when administered at a low dose (2.5 mg/kg/day) in a therapeutically relevant time window, after the start of injury.

Question:
- Is MW151 effective in an animal model of an acute CNS injury where proinflammatory cytokine up-regulation is a characteristic of pathology progression and later neurologic outcomes?

Approach:
- Test efficacy in a model of TBI using consideration of therapeutic time windows.
* Does post-injury compound treatment within delayed window yield modulation of the targeted process and the desired morbidity outcomes?

In vivo Efficacy Screen: rationale in closed head TBI model screening

![Graph showing changes in endpoints over time.](image)

- Time gap of injury-to-trauma center
- Long-term neurologic function (e.g., maze @ 1+month)
MW151 Post-Injury Treatment in Cortical Impact TBI Model of Diffuse Axonal Injury is Efficacious

addresses time window and yields pathology progression modification

IL-1β

TNFα

Edema

Y maze

Neuron damage

MW151 (5mg/kg) or saline IP

TBI or sham

Sacrifice

Cytokines

Edema

Neuron damage

Lloyd et al., 2008, J Neuroinflammation 5:28
Post-Injury Treatment in a Midline Fluid Percussion TBI Model of Diffuse Axonal Injury is also Effective

A. Cytokine surge after TBI

B. Therapeutic paradigm

C. MW151 suppresses injury-induced brain IL-1β levels
MW-151 is efficacious in “two-hit” seizure model

MW-151 treatment after the 1st hit prevented the enhanced increase in cytokine levels at P45.

Treatment with saline or Mzc following early-life seizures (5 mg/kg i.p. at 3h & 9h after injury). Animals allowed to recover for 30d, then administered 2nd hit of KA or saline.

Somera-Molina et al., 2009, Brain Res. 1282: 162.
MW-151 is efficacious in “two-hit” seizure model

MW-151 treatment after early-life seizures prevents the increased neuronal injury, susceptibility to seizures, and neurobehavioral impairment induced by a second hit in adulthood.
MW151 is Efficacious in “Two-Hit” TBI-induced Epilepsy Susceptibility Model (Electroconvulsive Shock)

MW151 treatment after 1st hit (TBI) prevents increased seizure susceptibility after 2nd hit (ECS).

MW151 (5 mg/kg) or saline IP

<table>
<thead>
<tr>
<th>Time</th>
<th>TBI or sham</th>
<th>ECS</th>
<th>Sacrifice</th>
<th>Sacrifice</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Seizure score

GFAP- 14d

Barnes maze

MW151 Effective in Animal Models of Multiple CNS Disorders where Glia Activation/Inflammatory Cytokines Contribute to Pathophysiology

- **AD-relevant pathology models:**
 - Hu et al., 2007, Bioorg Med Chem Lett 17:414
 - AD Tg (APP/PS1 KI) unpublished

- **TBI models of diffuse axonal injury:**
 - Lloyd et al., 2008, J Neuroinflammation 5:28
 - mFPI unpublished

- **EAE model:**
 - Karpus et al., 2008, J Neuroimmunology 203:73

- **Seizure-induced neurologic sequelae:**
 - Somera-Molina et al., 2007, Epilepsia 48:1785

- **Two-hit models:**
 - Somera-Molina et al., 2009, Brain Res. 1282:162 (KA, KA)
 - Chrzaszcz et al., 2010 J. Neurotrauma 27:1283 (TBI, ECS)
Summary and Conclusions

- Therapeutic intervention with MW151 in clinically relevant time windows attenuates the inflammatory cytokine up-regulation associated with synaptic dysfunction, with resultant improvement in neurologic and cognitive outcomes in diverse animal models of brain injury.

- Two-hit model data raise the possibility that intervention in with this new class of selective attenuators of glia activation might attenuate later in life susceptibility to other brain disorders.

- Novel, orally active, brain-penetrant drug candidates are available for clinical development into potential disease-modifying therapies for multiple CNS disorders.
Collaborators:
D. Martin Watterson, NU
Mark Wainwright, NU
William Karpus, NU
Jonathan Lifshitz, UK
Sally Frautschy, UCLA

Current group members:
Aaron Bachstetter
Edgardo Dimayuga
Danielle Goulding
Bob Sompol
Bin Xing
Rachel Rowe

Former:
MaryAnn Chrzaszcz
Jeffrey Craft
Tina Dragisic
Eric Lloyd
Kathleen Somera-Molina
Charu Venkatesan

Acknowledgements

Funding:
NIH (NIA and NINDS), AHAF, ADDF, Alzheimer’s Association Zenith Award, Lyndsey Whittingham Foundation

National Institute on Aging
American Health Assistance Foundation
Alzheimer’s Drug Discovery Foundation
The Lyndsey Whittingham Foundation