Biomarkers of increased diffusion anisotropy in semi-acute mild traumatic brain injury: A longitudinal perspective

Andrew Mayer, Ph.D.

Mind Research Network

University of New Mexico, Departments of Neurology And Psychology
TBI Classifications

- **MILD**: mTBI difficult to detect (CT OR MRI) BUT majority (85-90%) of patients recover within 3-6 months
- **MODERATE**: Can biomarkers map recovery process? (Iverson, 2005; Bigler, 2008; Belanger et al., 2005 & 2007)
- **SEVERE**

McCrea, M. et al. JAMA 2003;290:2556-2563
Diffuse Injury Mechanisms

- MEG; FMRI (Mayer et al., 2009; 2011; under review; Zhen et al., under review); 1H-MRS (Gasparovic et al., 2009; Yeo et al., 2011)

- DTI (Mayer et al., 2010; Ling et al., 2011; Ling et al., in press); 1H-MRS (Gasparovic et al., 2009; Yeo et al., 2011)

(Barkhoudarian et al. 2011)
1) AD = λ_1

2) RD = $\left(\lambda_1 + \lambda_2\right)/2$

$FA = \sqrt{\frac{3}{2}} \cdot \frac{\sqrt{(\lambda_1 - \lambda)^2 + (\lambda_2 - \lambda)^2 + (\lambda_3 - \lambda)^2}}{\sqrt{(\lambda_1)^2 + (\lambda_2)^2 + (\lambda_3)^2}}$

Diffusion Tensor Imaging

Beaulieu, 2001

Peled, 2007

- AD and RD may measure different pathology (Song et al., 2003; MacDonald et al., 2007)
• Reports of increased FA (Bazarian et al., 2007; Wilde et al., 2008; Mayer et al., 2010; Hartikainen et al., 2010; Chen et al., 2012)

• Reports of decreased FA in civilian (Arfanakis et al., 2002; Inglese et al., 2005; Lipton et al., 2009; Miles et al., 2008; Smits et al., 2010) and in military (MacDonald et al., 2011)

• Reports of similar FA (Zhang et al., 2010; Messe et al., 2010)

• Few longitudinal studies in civilian mTBI (Arfanakis et al., 2002 (n = 2); Mayer et al., (n = 9)), one in military (MacDonald et al., 2011) and relatively few examining AD and RD
Aims

A1: Replication (N = 28), clinical correlations (N = 50) and recovery (N = 26)

A2: More sophisticated analytic techniques to better characterize spatially diffuse lesions

mTBI Inclusion Criteria

- Standard (evaluated with 21 days of injury)
- Yoked clinical design
- DTI = 30 directions (TR = 9000 ms; TE = 84 ms; 2 mm3 voxels; 72 slices; repeated twice)
Analytic Assumptions

- Heterogeneous conditions produce spatially homogeneous injuries
Revised Analytic Strategies

White et al., 2009

\[
z = \frac{(X - \bar{X})}{s}
\]

HC Only = \(\bar{X}, s\)

mTBI & HC

\[z \geq 2 \text{ or } z \leq -2 \text{ & } \min(128 \ \mu l)\]
Clinical Characteristics/Findings

- Mean evaluation = 13 days post /4 months post
- Approximately 70% have LOC/PTA
- Significant differences in subjective complaints; none on objective measures
- Pre-morbid IQ lower in both cohorts
- Original = Replication
 - 3.5 days later for replication versus original cohort
DTI Results (Original Cohort)

- FA, AD and RD (Time 1; mTBI = 22; HC = 21)

- FA discriminates mTBI from HC (HC = 70%; mTBI = 81%)

Mayer et al., 2010; Neurology
DTI Results (Replication Cohort)

- FA Replication (Time 1; mTBI = 28; HC = 28)

No differences in voxel-wise analyses

Ling et al., in press; Brain
DTI Results (Pooled Sample)

- Time 1; mTBI = 50; HC = 50

- 43/48 show increased FA ($p < .000$); 7 significant and 4 at trend level

- No associations between time-post injury, injury severity (AAN rating) and injury mechanisms. Objective classification with genu significant but modest (71%)

Ling et al., in press; *Brain*
DTI Results (Cluster Analyses)

A) Original Cohort

B) Replication Cohort

Cluster Count

Cluster Volume

\[\text{Overlap Sum: } \begin{array}{c}
\text{3} \\
\text{4} \\
\text{≥ 5 Subjects}
\end{array} \]

\[\text{mTBI} \quad \text{HC} \]
DTI Results (Longitudinal Findings)

- Time 2; mTBI = 26; HC = 26

- Reductions weakly associated with decrease in subjective complaints at visit 2

Ling et al., in press; Brain
DTI Summary

- Findings now replicated in third cohort (n = 15)

FA and variability & RD = cytotoxic edema and/or myelin (Wilde et al., 2008; Bazarian et al., 2007)

Animal models of mTBI suggest extensive axonal/little myelin involvement (Spain et al., 2010)
• MD and FA positively associated with head motion in 49 HC
• No significance ($p > .10$) on measures of motion between groups

Ling et al., 2011; Human Brain Mapping
Conclusions

• Genu may be particularly sensitive as a result of long unmylenated fibers and initial loading forces.

• A spatially heterogeneous pattern of increased FA exists in various other white matter tracts, and these “lesions” appear to diminish with recovery.

• Relatively modest correlations with neurobehavioral symptoms and patient classification.
Conclusions

• Genu may be particularly sensitive as a result of long unmyelinated fibers and initial loading forces

• A spatially heterogeneous pattern of increased FA exists in various other white matter tracts, and these “lesions” appear to diminish with recovery

• Relatively modest correlations with neurobehavioral symptoms and patient classification
Conclusions

- Genu may be particularly sensitive as a result of long unmyelinated fibers and initial loading forces.

- A spatially heterogeneous pattern of increased FA exists in various other white matter tracts, and these “lesions” appear to diminish with recovery.

- Relatively modest correlations with neurobehavioral symptoms and patient classification.
Collaborators

Mind Research Network
Josef Ling
Flannery Merideth
Terri Teshiba
Amanda Pena
Zhen Yang, M.S.

University of New Mexico
Charles Gasparovic, PhD
John Phillips, MD
Silas Bussman
David Doezema, MD
Ross Reichard, MD
Ron Yeo, PhD
Arvind Caprihan, Ph.D.

Emory University
Alexandre Franco, PhD

Acknowledgements. Supported by the following grants to AM: The Mind Research Network DOE Grant DE-FG02-99ER62764, NIH/AEN R24-HD050836, NIH R21-NS064464-01A1, and NIH 3R21NS064464-01A1S1
Not the first ……

Sumerian medicine (~1700 BC)
- Trepanning instruments

Egyptian period
- Medical subspecialization.
- One papyrus describes neurologic injury
 - Case descriptions, one of temporal injury and aphasia

Greece
- TBI described in fifth book of *Epidemics* (*Hippocrates*)
 - 11 yo boy kicked in forehead by horse. Explore skull with metal probe, determine fracture. Any question, coat skull with barley plaster and scrape away to expose fracture lines. No further treatment if skull fracture present. If no skull fracture, trephinning to release accumulated “humors or to slacken the tightness of the skull.”

Roman medicine