. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol. 2005 Jul;1(2):112-9. PubMed.


Please login to recommend the paper.


  1. The paper by Degterev et al. is a tour de force characterization of necroptosis, a non-apoptotic form of programmed cell death that involves necrosis and autophagy. Existence of this caspase-independent pathway was hypothesized from observations that several different cultured cell types undergo a common necrotic death upon stimulation of death domain receptor proteins in the presence of caspase inhibitors. To investigate a necroptosis pathway, the authors performed a chemical screen of 15,000 small molecules for necroptosis inhibition. Of these, a heterocyclic compound, Necrostatin-1 (Nec-1), was shown to be a very potent and specific inhibitor of necroptosis.

    Application of Nec-1 did not block apoptosis, autophagy, or oxidative stress-induced necrosis, and also did not disrupt normal cellular physiology. Significantly, necroptosis was shown to be a delayed component of ischemia-associated neuronal cell death induced by cerebral artery occlusion in mice. Administration of Nec-1 attenuated the extent of ischemia-induced neuronal death and did not disrupt general brain physiology. Furthermore, Nec-1 exhibited an extended time window of protection and was able to exert its effects 6 hours after the onset of injury. The simultaneous addition of Nec-1 and the zVAD.fmk caspase inhibitor yielded an additive protective effect, suggesting a potentially effective therapeutic combination.

    Overall, necroptosis has a delayed latency compared to apoptosis, and the authors hypothesize that it may act as a redundant mechanism to provide cells with an ability to die when they find themselves in an environment non-permissive to apoptosis. Future studies to determine the site of Nec-1 action and characterize the components of necroptosis pathway promise to provide important insight not only into a conserved and important mechanism for cell death, but also to develop effective treatments for a variety of human pathologies.

    View all comments by John Nambu
  2. Two general mechanisms of cell death have been described: programmed cell death and necrosis. Programmed cell death, or apoptosis, is a directed program that proceeds through specific signal transduction pathways common to different cell types. In particular, apoptosis initiates a sequential activation of multiple caspases. In contrast, the alternative to programmed cell death, necrosis, is thought to be a nondirected cellular response to overwhelming stress. Therapeutic strategies to prevent cell death in pathological conditions have targeted apoptosis rather than necrosis, because of the perception that necrosis is unregulated and relatively nonspecific. However, recent reports have implicated specific signal transduction pathways, such as stimulation of death domain receptors (DRs) by their ligands, in necrotic cell death. In a paper that is stunning in its elegance and simplicity, Degterev et al. build on these observations by identifying a new type of programmed cell death that resembles necrosis but is distinct from both apoptosis and necrosis. They call it necroptosis.

    The authors had followed the growing number of studies suggesting that under certain situations, DR-induced cell death, which normally proceeds via an apoptotic pathway, is not prevented by caspase inhibitors and resembles necrosis. Because this caspase-independent DR-induced cell death led to similar necrotic morphological features in a wide variety of cell types, Degterev and collaborators suspected the involvement of a non-apoptotic programmed signal transduction pathway shared by multiple cell types. They chose an ingenious way to find out whether such a pathway actually exists. Cells treated simultaneously with the DR agonist TNFα and a pan-caspase inhibitor, a combination the authors used to devise an operational definition of necroptosis, were used to screen a library of chemical compounds for inhibitors of the death of these cells. The screen resulted in the selection of a molecule dubbed necrostatin-1 (Nec-1).

    The authors then used Nec-1 to answer a number of questions about this new pathway that they called necroptosis. First, they asked whether this pathway was indeed distinct from apoptosis. When cells are exposed to FasL (Fas ligand), they exhibit classic symptoms of apoptosis. Stimulation of cells with FasL in the presence of a pan-caspase inhibitor, in contrast, leads to morphological symptoms of necrosis. The authors showed that Nec-1 did not inhibit apoptotic morphology (cytoplasm condensation, chromatin marginalization, nuclear fragmentation, and plasma membrane blebbing) displayed by FasL-treated cells. However, Nec-1 did inhibit the appearance of necrotic morphology (nuclear condensation, organelle swelling, and early loss of plasma membrane integrity) displayed by cells exposed to FasL in the presence of the caspase inhibitor zVAD.fmk. Of special interest was the fact that the onset of apoptosis in response to FasL was faster than the onset of necroptosis in response to FasL in conjunction with zVAD.fmk. The authors suggest that apoptosis usually conceals or forestalls necroptosis because of its faster kinetics.

    The authors then asked whether necroptotic cell death utilized factors involved in known cell death signaling pathways. They compared the activity of Nec-1 with that of small-molecule inhibitors of such factors as calpains, calcium homeostasis perturbation, PARP, and nitric oxide synthase. None of the tested compounds inhibited necroptosis in all cell types, as Nec-1 does, establishing the uniqueness of the necroptotic pathway. Furthermore, necroptosis was not inhibited by antioxidants, nor did Nec-1 block the classic necrosis caused by the cell stressor menadione, showing the independence of necroptosis from oxidative stress.

    Neuronal cell death caused by ischemic brain injury is known to display some non-apoptotic features, and the participation of DRs in ischemic cell death has been postulated. The authors thought that perhaps ischemia produces conditions that are more conducive to necroptosis than to apoptosis. So they administered Nec-1 intracerebroventricularly to mice that had undergone middle cerebral artery occlusion (MCAO), a model for inducing ischemic damage in mice. Strikingly, Nec-1 reduced the infarct volume without blocking caspase 3 activation, showing that at least a portion of the cell death resulting from MCAO is necroptotic.

    A growing body of evidence supports the idea that apoptosis is at least one means by which neurons die in Alzheimer disease (AD). However, a number of studies have described non-apoptotic features of AD neurodegeneration. Furthermore, DRs have been implicated both in neuritic degeneration in AD brain and in neuronal death induced by β-amyloid (e.g., Morishima et al., 2001). It is possible that necroptosis also plays a role in AD neurodegeneration. It will be interesting to assess the effect of Nec-1 on neuropathology in mouse transgenic models of AD, or on neurodegeneration in in vitro models of AD neurodegeneration. If necroptosis is shown to be a component of AD pathology, a new world of therapeutic strategies, aimed at necroptotic pathways, would be opened up for this devastating disease.

    View all comments by Rachael Neve

Make a Comment

To make a comment you must login or register.