Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: Research: Forums: Live Discussions
Live Discussion Transcript


Posted 31 August 2006

E-mail discussion
Printable version

Live Discussion: Intracellular Aβ in Alzheimer's Disease

Return to Discussion Text

Live discussion held 16 May 2000.

Participants: Bruce Yankner, Huaxi Xu, Austin Yang, Gasparini, Charles Glabe, Virginia Lee, Steve Younkin, Dean Hartley, Dominic Walsh, Janet Walsh, Gunnar Gouras, June Kinoshita

Note: Transcript has been edited for clarity and accuracy.


Charles Glabe: Hi! Hey Austin!

Austin: Hi boss.

Charles Glabe: Boss?

Austin: Oh…I guess I don't work for you anymore.

Austin: Hi Virginia.

June: Hi Virginia, can you chat?

Virginia Lee: I am trying to figure out how to chat.

June: Hi Steve!

Steve Younkin: Hello everyone

Bruce: Hi Austin.

Charles Glabe: So what's all this talk about intracellular amyloid? What is it?

Virginia Lee: Charlie, you said that intracellular amyloid is garbage but does the garbage do anything?

June: Garbage can be a fertilizer.

Charles Glabe: Yes, Virginia, even garbage can be bad!

Virginia Lee: Charlie, how bad can intracellular amyloid be?

Charles Glabe: Don't know; but the range is probably from dysfunction to cell death.

Virginia Lee: Steve and Bruce, do you agree with Charlie?

Bruce: Virginia - Depends on whether it's picked up and how you store it.

Charles Glabe: Bruce, Whaddaya mean by "picked up"; Do cells cruise for amyloid?

Virginia Lee: Bruce, which is worst for the cell: The amyloid that the cell picks up or the amyloid produced by the cells?

Bruce: I mean disposed. Is lysosomal or endosomal Aβ inert or toxic?

Charles Glabe: It is both

Bruce: Perhaps - but we need data.

June: Let's bring this meeting to order. I'll throw out a question: Is there a consensus that there exist intracellular accumulations of Aβ? Gunnar, can you respond?

Gunnar Gouras: I certainly think that intraneuronal Aß42 accumulation exists.

Charles Glabe: Yes, but Aβ is only a fraction of what is actually accumulating. There is also a lot of insoluble misfolded APP and fragments of APP and I think that this confuses people who would expect that what accumulates extracellularly would be the same as what is accumulating inside.

Bruce: Charlie - do you think these APP metabolites accumulate in extracellular amyloid?

Charles Glabe: Probably for a while until they get proteolytically removed. There are some reports of APP immunoreactivity in extracellular amyloid deposits.

Steve Younkin: Charlie, are you referring to intraneuronal accumulations in the AD brain?

Charles Glabe: Yes, but most of the mechanistic data comes from culture models: cells and tissue slices.

Charles Glabe: Steve, are there two of you here?

Steve Younkin: Yes I'm here despite frequent reports to the contrary.

Virginia Lee: Charlie, do you think the extracellular accumulation of APP metabolites comes from dead cells?

Charles Glabe: Don't know. I see two possibilities: Dead cells or chronically-infected ones. I favor the latter.

Virginia Lee: Charlie, what do you mean by chronically infected ones?

Charles Glabe: They are the ones that have the intracellular amyloid that accumulates ad infinitum (apparently). What do Steve and Bruce think?

Bruce: There is certainly evidence for dead neurons within plaques which could serve as the source. But the idea that intracellular aggregates can also be actively secreted is an attractive hypothesis.

Charles Glabe: But dead neurons don't synthesize anything and the amyloid deposits are much larger than the cells.

Dominic Walsh: Perhaps the species secreted by cells are small but provide the nidus for plaque formation?

Charles Glabe: A more likely penultimate source for the amyloid: dystrophic neurites.

Bruce: I think that most of the extracellular deposition must come from extracellular Aβ, but the intracellular aggregates from dead neurons may serve as seeds.

Virginia Lee: I agree with Bruce.

Gunnar Gouras: So do I.

Charles Glabe: Could be, but what accumulates is not like what is secreted; it is mostly 42.

Bruce: I think it is important to distinguish what is secreted from what aggregates. The small Aβ42 component is disproportionately amyloidogenic.

Charles Glabe: The biochemical kinetics of Aβ assembly do not predict spontaneous amyloid growth at nanomolar concentrations. Even for Aβ 42

Dominic Walsh: Yeah, but test tube studies with synthetic peptide may be very far removed from what goes on in vivo

Charles Glabe: Sure, but it begs the question of what.

Bruce: This is a key point - how does the process get started? Peter Lansbury's seeding hypothesis addresses this question, but does not tell us what gives rise to the seeds.

Charles Glabe: I certainly think that extracellular growth can go on, but it doesn't explain all the cellular pathology like the dense granules in dystrophic neurites that are packed with APP and Aβ immunoreactivity.

Steve Younkin: I think Charlie makes a good point. That so many AD brains have Aß42 exclusively deposited is hard to reconcile with simple extracellular deposition -- or with simple extracellular growth of cellularly generated seeds.

Charles Glabe: Exactly Steve.

Charles Glabe: Only CVA [cerebrovascular amyloid] deposits look like they are diffusion based.

huaxi: I agree with both Steve and Charles

June: What form of Aβ are the dense granules composed of?

Charles Glabe: Dense granules are a little mysterious, but by IR, they seem to contain misfolded, insoluble APP and Aβ.

Bruce: Peter Lansbury's seeding hypothesis suggests that small extracellular insoluble seeds could catalyze the process but this doesn't tell us about the origin of the seeds. Certainly in vitro Aβ42 aggregates more readily. I don't think this argues for an intracellular or extracellular origin.

Bruce: Virginia, do your NT2 cells that accumulate intracellular Aβ42 secrete insoluble Aβ?

Charles Glabe: Actually, when you have mixtures of 40 and 42, they co-assemble with the same intermediate kinetics over a broad range of 40/42 ratios. Although 42 aggregates a little faster, one of the differences that gets overlooked is potentially significant for cells: Aβ 42 is much more resistant to degradation than 40; particularly in the endosomal/lysosomal system.

Bruce: What do you think is the basis for that - is it aggregation state? And is that difference observed at physiological concentrations of 42?

Dominic Walsh: Is the rate of degradation really greater for 42 than 40 or is it merely that 42 forms more readily forms degradation resistant fibrillar species

Charles Glabe: It could be the aggregation state, but simple in vitro proteinase K digestion shows that 42 is intrinsically more resistant, independent of whether it is soluble or in fibrils. The stuff that is resistant to degradation and accumulating inside cells is definitely aggregated and insoluble.

Steve Younkin: What is the "killer experiment" to determine whether intracellular Aß is important in AD. Is there one?

Charles Glabe: Human APP knockout? You said "Killer".

June: The role of intracellular Aβ being discussed seems to be as seeding material for extracellular aggregation. Does anyone think it can be toxic intracellularly?

Gouras: I think it needs to be considered as a possibility.

Bruce: I think a first step is to determine if it does anything to cells. Virginia - do your NT2 cells that accumulate intracellular 42 show increased neuronal death or degeneration? How about even chronically dysfunctional - is there any evidence?

Charles Glabe: Sure, in amyloid expressing cells the cells will just fill up with it.

Gunnar Gouras: I think it needs to be considered as a possibility.

Steve Younkin: June, it could be, but is it?

Charles Glabe: It doesn't have to be acutely toxic to be a problem.

June: Is there evidence of cells "filling up" with Aβ?

Charles Glabe: In vitro, it is easy to demonstrate cultured cells filling up with Aβ.

Gunnar Gouras: In regards to June's question a few responses ago, I do think that there is evidence for vulnerable neurons "filling up with Aβ" - see my background/discussion.

huaxi: If someone can link intracellular Aβ to tau phosphorylation and apoptosis-that would be the killer.

Charles Glabe: By the way, did you see the report by the Mandelkows in PNAS that tau is just another amyloid?

June: No, what is the Mandelkow's argument?

Charles Glabe: Tau neurofibrillary tangles have a cross beta core, just like other amyloids.

June: Is this [intracellular Aβ hypothesis] a question of choking to death on garbage, or does the garbage trigger a specific pathogenic pathway?

Charles Glabe: I favor the idea that it triggers some pathologic cell response that is common for all types of accumulating garbage, like amyloid.

June: What are those pathologic responses to amyloids?

Charles Glabe: O2 radicals,

Bruce: There is increasing evidence for activation of a variety of signal transduction cascades that mediate cell death by caspase activation. This theme has also appeared for polyglutamine repeat containing proteins.

Charles Glabe: Attempts to clear the insoluble garbage: send it to Siberia (the neurite).

June: And then what?

Charles Glabe: If clearance can't keep up with accumulation, the neuron loses (functionally and maybe literally).

June: Gunnar, do you agree with either of these scenarios, or do you think other factors are involved?

Gunnar Gouras: I would agree that accumulating intraneuronal Aß42 most likely is not a good thing. I believe that various mechanisms may be involved first in promoting intraneuronal Aß accumulation, and subsequently in causing neuronal dysfunction and cell death potentially also via tau, oxidative stress and/or apoptotic mechanisms.

June: How do amyloids result in oxidative stress?

Charles Glabe: I don't know how amyloids induce oxidative stress, but they all seem to.

Virginia Lee: One major problem in studying oxidative stress using antibodies in postmortem tissue is that you don't know whether the amyloid aggregates get modified by oxidative stress because it is sitting inside the cells for a long time or that oxidative stress is the cause of cells death

Charles Glabe: That is why we have cell culture models.

Bruce: Virginia - do you know whether your NT2 cells that accumulate intraneuronal 42 show increased oxidative stress?

Virginia Lee: Bruce, we have not done those experiments yet. But I think they are worth doing.

Virginia Lee: I think all intracellular aggregates kill cells. For example, NFTs, and Lewy bodies, although they are comprised of different proteins, i.e. tau and alpha synuclein respectively, they form beta-pleated sheet structures intracellularly and they kill cells. Therefore, I favor a similar mechanism for intracellular amyloid doing the same.

Charles Glabe: Me too. I like common themes.

Charles Glabe faints and falls over

June: Quick, throw some water on Charlie!

Bruce: I think it's more complicated than that. There is good evidence that in Huntington's disease the intraneuronal inclusions may in fact be protective not neurotoxic (Sandou et al., 1999; Klement et al., 1999). There may be toxic and non-toxic forms.

Charles Glabe: I don't buy it. Protective schmotective.

Bruce: Is Charlie still unconscious?

huaxi: In all other neurodegenerative cases, inclusions are in the cytoplasm. Aβ seems to be generated and accumulated in the secretory compartments.

Austin: Charlie and Virginia: Astrocytes and microglia can certainly accumulate much more aggregates than neurons and they are very resistant to Aβ

Virginia Lee: Austin, you may be right for amyloid. However, tau inclusions and synuclein inclusions in glial cells (e.g., oligodendrocytes and astrocytes cause them to die.

Bruce: Virginia - the MTT assay would be an easy pilot.

Virginia Lee: Yes.

Charles Glabe: The consequences are different for neurons, astros and micros. Astros and Micros can just die and then they will be replaced. Neurons cannot be replaced and they have serious work to do. That is why all these disease are primarily neurodegenerative.

June: Virginia, do the NT2 cells secrete the Aβ accumulations?

Virginia Lee: June, the NT2N cells secrete both Aβ40 and 42, but they accumulate a pool of Aβ42 in the ER that is not secreted.

Charles Glabe: Are you sure it stays in the ER? It is pretty hard to metabolically label a pool that doesn't turn over.

Virginia Lee: Charlie, I don't know exactly where it is since we have not had any luck localizing it. However, using the APPdeltaKK mutant in NT2N cells, we know that the pool of Aβ42 produced by this construct is not secreted.

Bruce: Perhaps they have to die in order to release it - analogous to the dead neuronal profiles reported at the epicenter of plaques.

Virginia Lee: June, I do believe that this pool of Aβ 42 could be quite toxic since they accumulate with age in culture. One of my hypothesis is that intracellular accumulation of Aβ42 eventually kill neurons and serve as a nidus for the secreted Aβ42 and 42 to form a classical plaque.

StephenSnyder: Gotta leave now, thanks for the insights.

Dominic Walsh: Virginia, is the accumulated Aβ that requires formic acid extraction aggregated or simply bound to carrier proteins?

Virginia Lee: Dominic: As I said to Charlie, we have not had luck localizing intracellular Aβ42 yet but we are still trying. If the material is bound to other proteins, it is bound very tightly since we have not been able to extract much of this material except with formic acid.

Dominic Walsh: I'm thinking about Alex Roher's finding that formic acid treatment appears to release Aβ from carrier proteins.

Austin: Charlie: we have been looking at the solubility of cell surface (extracellular), protease resistant 42. They are very soluble and don't aggregate on SDS-PAGE

Charles Glabe: I agree; very little if any insoluble intracellular Aβ gets secreted. There is a lot of APP that hangs out with the insoluble intracellular Aβ, but is it bound? Probably, but data would help.

June: What are the implications of these intra vs. extracellular issues when it comes to intervention strategies?

Charles Glabe: Secretase inhibitors may not be effective. Clearance of extracellular deposits a la immunization may not be beneficial.

June: We're at the end of our hour. I want to invite everyone to make a closing statement re: what next?

Gunnar Gouras: It won't be easy to provide a final answer to this issue, but I agree that we need to study this insoluble intracellular Aβ 42 more

Charles Glabe: I'm sorry that Steve Snyder left already because I would like to say that we need to put more effort into understanding intracellular amyloid. Maybe we can make a living off of this for a few more years.

Virginia Lee: Bye everybody!

June: Thanks for joining us!

hartley: Thank you for the interesting discussion!

June: It appears we are all out of words for the time being. Thank you all very much for taking part in today's discussion.

Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad