Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: Research: Forums: Live Discussions
Live Discussions

Updated 22 April 2002

Cerebrometabolic Deficiency in Alzheimer's Disease

John P. Blass and Gary Gibson led this live discussion on 15 April 2002. Readers are invited to submit additional comments by using our Comments form at the bottom of the page.

View Transcript of Live Discussion — Posted 29 August 2006

View Comments By:
Siegfried Hoyer — Posted 14 April 2002
Archibaldo Donoso — Posted 29 August 2006


Background Text
By John P. Blass and Gary Gibson, Weill Cornell College of Medicine

Our group has proposed that the cerebrometabolic deficiency in Alzheimer's disease(AD) is the proximate cause of the clinical disability. Several sets of observations support this hypothesis.

1. Impaired brain metabolism essentially always occurs in clinically significant AD, and the degree of clinical disability is proportional to the degree of metabolic impairment. The earliest, mildest changes in brain metabolism occur even before the onset of measurable cognitive impairment or atrophy. This observation disproves the now outdated assumption that the decreased metabolism is simply a consequence of decreased mental function or of atrophy. One of the important mechanisms reducing brain metabolism in AD appears to be damage to key mitochondrial components.

2. Inducing impairments of brain metabolism causes changes in mentation that mimic the clinical disabilities in AD, in both humans and experimental animals.

3. Preliminary results from several units suggest that treatment directed at the impairment of brain metabolism can improve neuropsychological functions in AD patients. This hypothesis does not negate the importance of other mechanisms in AD, such as amyloid accumulation, vascular compromise, and free radical action. However, those other abnormalities can occur in people whose mentation is still clinically unimpaired. Approximately half the people over the age of 85 who have the full panoply of the neuropathology of AD are clinically well. The frequently-advanced hypothesis that they would have developed dementia "if they had lived long enough" is not testable. In contrast, once significant decrease in the rate of brain metabolism occurs, mentation essentially invariably becomes defective. That statement is supported by robust experimental observations in both humans and other animals.

References
1. Snowden DA. Aging and Alzheimer's disease: Lessons from the Nun study. Gerontologist 1997;(37):150-156. Abstract.

2. Blass JP. Immunological treatment of Alzheimer's disease. New Eng J Med 1999;(22):1694-1695. Abstract.

3. Robinson SR, Bishop GM. A-β as a bioflocculant: implications for the amyloid hypothesis of Alzheimer's disease. Neurobiol Aging, in press.

4. Gibson GE, Park LC, Zhang H, Sorbi S, Calingasan NY. Oxidative stress and a key metabolic enzyme in Alzheimer brains, cultured cells, and an animal model of chronic oxidative deficits. Ann N Y Acad Sci 1999;(893):79-94. Abstract.

5. Gibson GE, Blass JP. Metabolism and neurotransmission. In Handbook of Neurochemistry, A. Lajtha ed, Vol. 3, 2nd Ed. Plenum Press, New York, 1982, pp. 633-651.

6. Blass JP, Gibson GE. Cerebrometabolic aspects of delirium in relationship to dementia. Dement Geriatr Cogn Disord 1999;(10):335-338. Abstract.

7. Hirsch JA, Gibson GE. Selective alteration of neurotransmitter release by low oxygen in vitro. Neurochem Res 1984;(9):1039-1049. Abstract.

8. Blass JP. Pathophysiology of the Alzheimer's syndrome. Neurology 1993;(43):S25-S38.

9. Blass JP. The mitochondrial spiral: An adequate cause of dementia in the Alzheimer syndrome. Ann NY Acad Sci 2000;(924):170-183. Abstract.

10. Floyd RA. Antioxidants, oxidative stress, and degenerative neurological disorders. Proc Soc Exp Biol Med 1999;(222):236-245. Abstract.

11. Frey KA, Minoshima S, Kuhl DE. Neurochemical imaging of Alzheimer's disease and other degenerative dementias. Q J Nucl Med 1998;(42):166-168. Abstract.

12. de Leon MJ, Convit A, Wolf OT, Tarshish CY, DeSanti S, Rusinek H, Tsui W, Kandil E, Schere H, Roche A, Imossi A, Thorn E, Bobinski M, Caraos C, Lesbre P, Schyler D, Poirier J, Resiberg B, Fowler J. Prediction of cognitive decline in normal elderly subjects with 2-[18F]fluoro-2-deoxyglucose/positron-emission tomography (FDC/PET). Proc Natl Acad Sci USA 2001;(98):10966-10971. Abstract.

13. Kumar A, Schapiro MB, Grady G, Haxby JV, Wagner E, Salerno JA, Friedland RP, Rapoport SI. High resolution PET studies in Alzheimer's disease. Neuropsychopharmacology 1991;(4):35-46. Abstract.

14. Fukuyama H, Ogawa M, Yamauchi H, Yamaguchi S, Kimura J, Yonekura Y, Konishi J. Altered cerebral energy metabolism in Alzheimer's disease: A PET study. J Nuclear Med 1994;(35):1-6. Abstract.

15. Frolich L, Blum-Degen D, Bernstein HG, Engelsberger S, Humfrich J, Laufer S, Muschner D, Thalheimer A, Trk A, Hoyer S, Zchling R, Boissl KW, Jellinger K, Riederer O. Insulin and insulin receptors in the brain in aging and sporadic Alzheimer's disease. J Neural Transm 1998;(105):423-438. Abstract.

16. Henneberg N, Hoyer S. Desensitization of the neuronal insulin receptor: a new approach in the etiopathogenesis of late-onset sporadic dementia of the Alzheimer type (SDAT)? Arch Gerontol Geriatr 1995;(21):63-74.

17. Hoyer S. Is sporadic Alzheimer disease the brain type of non-insulin dependent diabetes mellitus? A challenging hypothesis. J Neural Transm 1998;(105):415-422. Abstract.

18. Sorbi S, Bird ED, Blass JP. Decreased pyruvate dehydrogenase complex activity in Huntington and Alzheimer brain. Ann Neurol 1983;(13):72-78. Abstract.

19. Gibson GE, Sheu K-FR, Blass JP. Abnormalities of mitochondrial enzymes in Alzheimer disease. J Neural Transmission 1998;(105):855-870. Abstract.

20. Gibson GE, Haroutunian V, Zhang H, Park LC, Shi Q, Lesser M, Mohs RC, Sheu RK-F, Blass JP, Mitochondrial damage in Alzheimer's disease varies with apolipoprotein E genotype. Ann Neurol 2000;(48):297-303. Abstract.

21. Kish SJ, Mastrogiacomo F, Guttman M, Furukawa Y, Taanman JW, Dozic S, Pandolfo M, Lam L, Distefano L, Chang LJ. Decreased brain protein levels of cytochrome oxidase subunits in Alzheimer's disease and hereditary spinocerebellar ataxia disorders: a nonspecific change? J Neurochem 1999;(72):700-707. Abstract.

22. Sheu K-FR, Blass JP. The a-ketoglutarate dehydrogenase complex. Ann NY Acad Sci 1999;(893):61-78. Abstract.

23. Blass JP, Sheu K-FR, Piacentini S, Sorbi S. Inherent abnormalities in oxidative metabolism in AD: Interaction with vascular abnormalities. Ann NY Acad Sci 1997;(826):382-385. Abstract.

24. Calingasan NY, Baker H, Sheu K-F, Gibson GE. Distribution of the a-ketoglutarate dehydrogenase complex in rat brain. J Comp Neurol 1994;(346):461-479. Abstract.

25. Ko L, Sheu K-FR, Thaler HT, Markesbery WR, Blass JP. Selective loss of KGDHC-enriched neurons in Alzheimer temporal cortex: does mitochondrial variation contribute to selective vulnerability? J Molec Neurosci 2001;(17):361-369. Abstract.

26. Curti D, Rognoni F, Gasparini L, Cattaneo A, Paolillo M, Racchi M, Zanni L, Bianchetti A, Trabucci A, Bergamaschi S, Govoni S. Oxidative metabolism in cultured fibroblasts from sporadic Alzheimer's disease. Neurosci Lett 1997;(236):13-16. Abstract.

27. Butterfield DA, Yatin SM, Link CD. In vitro and in vivo protein oxidation induced by Alzheimer's disease amyloid beta-peptide (1-42). Ann NY Acad Sci 1999;(42):265-268. Abstract.



Comments on Live Discussion
  Comment by:  Siegfried Hoyer
Submitted 14 April 2002  |  Permalink Posted 14 April 2002

"A central issue in medicine is the grouping of disorders on the basis of their etiology, yet one common clinico-pathologic feature of diseases does not indicate a common etiology. Therefore, from a nosological point of view, Alzheimer's disease is no one single disorder. Rather, type I/ disease I is due to mutation within three genes (5 percent of all AD cases); whereas type II/ disease II is sporadic in origin without any mutations (95 percent of cases). Both susceptibility genes and adult life-style risk factors, such as aging, participate in the origin of the latter AD type. Thus, I fully support the view of John Blass and Gary Gibson that sporadic AD is an age-associated cerebrometabolic disorder.

It appears necessary to make a clear distinction between these two heterogenous pathologic conditions. In its early pathogenesis, perhaps in its etiology, normal functions of insulin and insulin signal transduction were found to be severely perturbed in the brain, causing acetylcholine reduction, an ATP deficit, disturbed AbPP trafficking in the endoplasmic reticulum and Golgi...  Read more


  Comment by:  Archibaldo Donoso
Submitted 22 April 2002  |  Permalink Posted 29 August 2006

Of course, metabolism and function are the two faces of a coin. But metabolic failure exists not only in Alzheimer's disease, but in any brain disease. So, if we want to define the disease we must use the peculiar characteristics (NFT and so on) and not the metabolism.

View all comments by Archibaldo Donoso
  Submit a Comment on this Live Discussion
Cast your vote and/or make a comment on this live discussion. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
 


Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
Live Discussion FAQs

Webinar: A Webinar is a seminar conducted remotely over the Web. Attendees view the slides through their Web browser and hear the presentations over their own telephones.

Registration: All participants are to register by clicking on the "Register for the Webinar" link.

Access: After you register, you will receive an e-mail with a link to the Webinar and a phone number.

View Webinar Instructions

Early Detection Survey Results
The Alzheimer Disease Early Detection Surveys were designed to gauge perceptions and knowledge of early detection of Alzheimer disease as a follow-up to our Early Detection Webinar. The surveys were developed in collaboration with the Geoffrey Beene Foundation.
View Researcher Survey Results [.pdf].
View Public Survey Results [.pdf].
AlzPossible Initiative
The AlzPossible Initiative is an innovative "center without walls" that enables skilled individuals to share their knowledge about best practices in Alzheimer caregiving through this open forum.
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad