. Endocytosis of synaptic ADAM10 in neuronal plasticity and Alzheimer's disease. J Clin Invest. 2013 Jun 3;123(6):2523-38. PubMed.

Recommends

Please login to recommend the paper.

Comments

Make a Comment

To make a comment you must login or register.

Comments on Primary Papers and News

  1. Marcello and colleagues demonstrate that synaptic activity regulates the levels of ADAM10 on the plasma membrane. Long-term potentiation (LTP) induces ADAM10 internalization by clathrin-mediated endocytosis (CME), whereas LTD induces its insertion into the plasma membrane. There is a long history of literature linking CME and Aβ; however, those studies generally revolve around APP internalization and Aβ generation. Work from our group and others shows that synaptic activity causes CME of APP, which increases Aβ production in endosomes. The data in the Marcello paper look at this from a different angle. Here, synaptic activity increases ADAM10 internalization, which decreases its ability to cleave APP; in theory, this would then increase Aβ generation. So taken together, this suggests that synaptic activity and CME may promote Aβ generation by two parallel pathways: 1) increasing amyloidogenic processing of APP within endosomes, and 2) decreasing non-amyloidogenic processing of APP at the plasma membrane.

    As with any good study, lots of questions remain. Is ADAM10 internalized into separate endosomes than APP? Or can ADAM10 and APP still be within the same endosome but maybe the low pH prevents further cleavage? How is ADAM10 trafficked or segregated after CME? The authors demonstrate that activity modulates APP cleavage by ADAM10, which is consistent with a reduction in Aβ, but one thing lacking in this paper is a direct measurement that Aβ generation is changing as a consequence of the altered ADAM10 subcellular localization.

    View all comments by John Cirrito
  2. A disintegrin and metalloproteinase 10 (ADAM10) is apparently one of the most critical membrane-associated proteases in the central nervous system (CNS). Its prominent role in the embryonic and adult CNS has been revealed by a number of studies. Next to APP, an increasing number of transmembrane proteins, including Notch receptors and ligands, are subject to ADAM10-mediated shedding. These shedding events are of critical importance to modulate postsynaptic function and synaptic plasticity.

    Based on their previous work, Monica Di Luca´s group convincingly addressed the post-transcriptional regulation of ADAM10 in neurons. Both its transport to the postsynaptic membrane and its removal are central events to regulate synaptic functions, morphology, and the processing of important substrates, including APP. In the current study, the authors focus on the endocytosis of ADAM10 from the postsynaptic membrane. Using mainly coimmunoprecipitation experiments, they showed that, like other surface molecules, ADAM10 endocytosis depends on binding to the clathrin adaptor AP2. This binding seems to be stronger in samples from AD patients. It was shown that abolishing this binding using mutants or pharmacological approaches also reduced ADAM10 endocytosis. Interestingly, the authors found that long-term potentiation induced this process, whereas long-term depression had an opposite effect by stimulating interaction of ADAM10 and SAP97, thereby promoting ADAM10 delivery to the plasma membrane. In a last set of experiments, they showed that this dynamic, and apparently ADAM10-dependent regulation, also led to a differential processing of APP at the α-secretase site. ADAM10 localization at the synaptic membrane more or less determines whether α-secretase processing occurs.

    What are the consequences for AD? The findings certainly increase our basic understanding of how APP processing, synaptic remodeling, and cellular localization of ADAM10 are linked. I do not feel that immediate new therapeutic targets are apparent, since the factors involved affect a number of other proteins as well; for example, the fine-tuned localization of ADAM10 is necessary for the degree of shedding of most likely more than 10 other synaptic membrane proteins. Also, AP2 mediates endocytosis of a huge number of surface proteins. On the other hand, additional intracellular and extracellular factors are needed to control the activity of ADAM10. We and others showed recently, for example, that the integration of ADAM10 in the tetraspanin web is instrumental for forward trafficking of the protease. It is likely that additional factors directly contribute to the cellular localization of ADAM10.

    As discussed by the authors, the Aβ levels in vivo are in part dependent on the activity of ADAM10. This study additionally provides evidence that the degree of neuronal and synaptic activity alters the function (and localization) of ADAM10 and the degree of Aβ production. Based on their initial observations that in AD brains, the endocytic route of ADAM10 is favored, this would directly explain both the increased Aβ production and the problems in synaptogenes as reported in AD.

    View all comments by Paul Saftig
  3. I read this paper by Marcello et al. with much interest, and I was impressed both by the number of data and the coherence of the hypothesis. It explains the role played by neuronal activity in Aβ secretion. It also sheds new light on the connection between endocytosis and Aβ.

    In addition, it opens new research perspectives: The alteration of ADAM10/AP2 association in AD is currently not explained and could be related to changes in the cell membrane itself. We have, in this respect, shown that increases in membrane cholesterol favor endocytosis and production of Aβ (see Marquer et al., 2011; Cossec et al., 2010).

    I'd add a word of caution on the neuropathology. Only six cases were examined at Braak stage IV—these were apparently the same cases the authors studied before (see Marcello et al., 2012). Braak stage IV pathology is common in asymptomatic aged persons. The diagnostic probability of Alzheimer's disease is only ranked as intermediate in the current diagnostic criteria (Hyman et al., 2012; Montine et al., 2012). Such cases are, by definition, free from tau pathology in the neocortex. Usually, Aβ deposits are, however, already present. This could be determined in the studied cases, for instance, by identifying the stage of amyloid pathology (see Thal et al., 2002). It would be interesting to compare the association of ADAM10/AP2 in the hippocampus (with tangle pathology) and in the frontal cortex (devoid of tangle pathology but possibly with Aβ deposition). Tau accumulation, which may affect synapses, could play a central role in the alteration of ADAM10/AP2 association, as it probably does for the clathrin adaptor PICALM, which we found to colocalize with tangles (Ando et al., 2013). New studies with more advanced cases would strengthen the human data.

    View all comments by Charles Duyckaerts

This paper appears in the following:

News

  1. Endocytosis Pulls α-Secretase From Synapses