. Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer's disease. J Neurosci. 2007 Jan 24;27(4):796-807. PubMed.

Recommends

Please login to recommend the paper.

Comments

Make a Comment

To make a comment you must login or register.

Comments on Primary Papers and News

  1. The study by Biswas and colleagues supporting the role of miscreant cell cycle proteins in Aβ toxicity is interesting.

    Dysregulation of the cell cycle would seem to be a significant factor in AD. PIN1, which is downregulated by oxidation in AD neurons and is involved in APP processing, has recently been found to protect Emi1 (anaphase-promoting complex (APC) early mitotic inhibitor 1) from degradation [1]. Emi1 is essential for prevention of rereplication, as is geminin, an interactor with the SWI-SNF complex which has been found to be reduced in the DS fetal brain. Rereplication seen after Emi1 depletion is due to premature activation of APC/C that results in destabilization of geminin [2]. Kim et al. [3] report AP4 and geminin act as a repressor complex that regulates expression of target genes including DYRK1A. In view of the fact that DYRK1A is also reported to be increased in AD, might we suspect reduced geminin [4]? Geminin is an inhibitor of Cdt1p. Ayte and colleagues report that increased expression of Cdc18p and Cdt1p in G2 phase results in endoreduplication and polyploidy 21 [5,6]. Perhaps the increased Cdt1p and reduced geminin may explain DS and the trisomy 21 mosaicism in AD.

    Zhu and Dutta [7] report that rereplication activates the ATR and BRCA1-mediated Fanconi anemia pathway. Of interest is that APP is significantly upregulated on induction of BRCA1 [8].

    Arendt and Bruckner [9] suggest a tight association of the origin recognition complex (ORC) with neurofibrillar pathology in AD. It's of interest that Araki and colleagues [10] find that the anaphase-promoting complex degrades the origin recognition complex large subunit in Drosophila.

    View all comments by Mary Reid