Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: Papers of the Week
Annotation


Zhang YW, Liu S, Zhang X, Li WB, Chen Y, Huang X, Sun L, Luo W, Netzer WJ, Threadgill R, Wiegand G, Wang R, Cohen SN, Greengard P, Liao FF, Li L, Xu H. A functional mouse retroposed gene Rps23r1 reduces Alzheimer's beta-amyloid levels and tau phosphorylation. Neuron. 2009 Nov 12;64(3):328-40. PubMed Abstract

  
Comments on Paper and Primary News
  Primary News: New Retro: Mouse Gene Tweaks Both Aβ, Tau Pathology via GSK3

Comment by:  Jurgen Goetz, ARF Advisor
Submitted 12 November 2009  |  Permalink Posted 12 November 2009

In establishing a link between the Aβ and tau pathologies, Zhang and colleagues used an elegant screening approach called random homozygous gene perturbation (RHGP). It allowed them, in mouse N2a cells, to identify a retrotransposed gene that “interacted” with APP/Aβ by causing increased surface accumulation of APP βCTF. It turned out when transfecting this gene into several different cell lines from a range of species, that this causes an interaction with adenylate cyclases, activating the kinase PKA, which then inactivates GSK3, which, having both tau and APP as substrate, results in reduced tau phosphorylation and Aβ production.

It is interesting to see that GSK3 is the common denominator and any protein in the PKA/GSK cascade seems to be a suitable drug target. The authors move on to generate an Rps23r1 transgenic mouse strain, which they cross with the triple AD mouse generated by Salvatore Oddo and Frank LaFerla. The authors show that this is beneficial with regard to GSK3 activity, tau phosphorylation, and Aβ formation. Whether humans have a homologue of Rps23r1 is...  Read more


  Primary News: New Retro: Mouse Gene Tweaks Both Aβ, Tau Pathology via GSK3

Comment by:  Ratan Bhat
Submitted 12 November 2009  |  Permalink Posted 12 November 2009

This manuscript shows the value of functional genetics screens in identifying previously unrecognized modulators of GSK3 function, and emphasizes the centrality of dynamic tau phosphorylation as a key mechanism in AD pathology. When the functional role of this type of novel component is fully understood, it may offer a route toward understanding the basis of therapeutic response as one element. Previous attempts to link GSK3 to both pathologies have been inconclusive since not all GSK3 inhibitors inhibit both Aβ and tau phosphorylation and even if some of them do, there is a clear disconnect between the concentrations needed to reduce Aβ levels, and tau phosphorylation. The identification of Rps23r1 clearly represents an important step in identifying common pathways that regulate both Aβ levels and tau phosphorylation. The authors provide convincing evidence of this in the triple transgenic mouse. Equally important is the fact that this protein exerts its effects in human cells. Although Rsp23r1 itself may not be amenable as a drug discovery approach, negative regulators of this...  Read more
  Submit a Comment on this Paper
Cast your vote and/or make a comment on this paper. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend this paper

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
 
 

REAGENTS/MATERIAL:
Antibodies used were: mouse monoclonal anti-Myc (9E10), rabbit anti-adenylate cyclases, anti-His, anti-ADAM10, and anti-TACE from Santa Cruz Biotechnology;
anti-GSK-3a, anti-GSK-3b, rabbit anti-phospho-GSK-3a/b (Ser21/9), anti-CREB, anti-phospho-CREB (Ser 133), anti-PSD-95, and rabbit anti-synapsin from Cell Signaling Technology;
anti-Ab40, rabbit anti-phos T205 tau and anti-total tau from Abcam;
anti-Ab (6E10) from Covance; mouse monoclonal anti-tau-1 from Chemicon; anti-a-tubulin from Sigma Aldrich; mouse monoclonal anti-PHF-1 tau from P. Davies at Albert Einstein School of Medicine, and the FCA18 antibody specifically recognizing the N terminus of APP betaCTF from F. Checler at Institut de Pharmacologie Molecularie et Cellulaire du CNRS (Ancolio et al.,1999, Proc. Natl. Acad. Sci. USA 96, 4119–4124). The rabbit polyclonal antibody 369 against the APP C terminus (Xu et al., 1997, Proc. Natl. Acad. Sci. USA 94, 3748–3752) and the anti-RPS23R1 antibody were developed in our laboratory.

Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad