Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: Papers of the Week
Annotation


Lee JH, Park SM, Kim OS, Lee CS, Woo JH, Park SJ, Joe EH, Jou I. Differential SUMOylation of LXRalpha and LXRbeta mediates transrepression of STAT1 inflammatory signaling in IFN-gamma-stimulated brain astrocytes. Mol Cell. 2009 Sep 24;35(6):806-17. PubMed Abstract

  
Comments on Paper and Primary News
  Comment by:  Radosveta Koldamova, Iliya Lefterov
Submitted 30 September 2009  |  Permalink Posted 30 September 2009

In this article, Lee et al. examine the mechanism by which Liver X Receptors (LXRα /b) inhibit inflammation in astrocytes. LXR are key transcriptional regulators of cholesterol and lipid metabolism, and LXR agonists were shown to decrease amyloid deposition in APP transgenic mice (1-3). LXR ligands, and thus activated LXR, inhibit inflammation in the periphery as well as in the brain, but how they do that was a mystery (4,5).

In this study, the authors use primary astrocytes from rat brain that were stimulated by IFN-g to produce inflammatory cytokines. Lee et al. concentrate on signal transduction activity and enhancement of transcription (STAT1) signaling pathways. First, they prove that LXR ligands do not affect the phosphorylation or nuclear translocation of STAT1, but rather prevent its binding to the promoter. Next, using a series of elegant and convincing experiments, Lee et al. prove that the suppressive actions of LXR ligands on STAT1 inflammatory signaling are LXR-receptor dependent. It means that LXRα and LXRβ use slightly different but still similar ways to...  Read more


  Comment by:  Veronique Dorval
Submitted 3 October 2009  |  Permalink Posted 3 October 2009

The present study assesses the control of inflammatory signaling by SUMOylation of nuclear receptors in immunity. LXRα/β are ligand-activated nuclear receptors that can inhibit the expression of inflammatory genes. It is known that inflammation contributes to several human pathologies, including Alzheimer disease (AD). SUMOylation is a post-translational modification, and the interest for the identification of substrates and functions keep growing. It has been shown that tau, involved in AD neurofibrillary tangles, is a SUMO substrate. And a fast-growing number of SUMO substrates are identified in healthy and disease neurons. Here, Lee and colleagues demonstrate a new link between SUMO and inflammation.

Using rat brain astrocytes, the authors showed that the expression of STAT1-regulated inflammatory genes is negatively regulated by the formation of the trimeric complexes HDAC4/STAT1/LXRα and PIAS1/STAT1/LXRβ. PIAS1 and HDAC4 are known SUMO ligases, and in addition to their presence in the complexes, the authors showed that LXRs are SUMOylated in the trimers. These complexes...  Read more

  Submit a Comment on this Paper
Cast your vote and/or make a comment on this paper. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend this paper

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
 
 

REAGENTS/MATERIAL:
The following antibodies were used:
anti-GFAP and anti-α-tubulin were purchased from Sigma Aldrich (St. Louis, MO). Anti-phospho-STAT1, anti-total-STAT1 and anti-SUMO2/3 were purchased from Cell Signaling (Beverly, MA). Antibodies against interferon regulatory factor IRF-1, LXRα, LXRβ, PIAS1/3, HDAC4, SUMO1, and green fluorescent protein (GFP) were purchased from Santa Cruz Biotechnology (Santa Cruz, CA).

Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad