Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: Papers of the Week
Annotation


Yan P, Bero AW, Cirrito JR, Xiao Q, Hu X, Wang Y, Gonzales E, Holtzman DM, Lee JM. Characterizing the appearance and growth of amyloid plaques in APP/PS1 mice. J Neurosci. 2009 Aug 26;29(34):10706-14. PubMed Abstract

  
Comments on Paper and Primary News
  Comment by:  Gunnar K. Gouras, ARF Advisor
Submitted 2 September 2009  |  Permalink Posted 2 September 2009

This is an excellent study by Lee and colleagues employing serial multiphoton microscopy (MPM) to provide more clues to the process of plaque formation in the living brain of a well-established APP/PS1 transgenic mouse model of Alzheimer disease. Previous work by Hyman and colleagues had provided novel observations on the remarkably rapid appearance of plaques, and had also noted that once formed, there was little additional growth in the size of plaques. The focus of the current study is less the appearance and more the growth in the size of existing plaques over a time frame of a few weeks using a thinned skull window approach. They provide intriguing evidence for the importance of the type of window used to visualize plaques. Specifically, Lee and colleagues show that the open craniotomy with coverslip approach used in previous MPM studies in AD prevents the further growth of plaques and even augments regression of some plaques when compared with the thin-skull method. With the open- but not thin-skull method, there is marked cortical activation of inflammatory cells below the...  Read more

  Comment by:  Samir Kumar-Singh
Submitted 2 September 2009  |  Permalink Posted 2 September 2009

Yan and colleagues add another piece to the plaque kinetics puzzle by showing, with on multiphoton in vivo microscopy, that amyloid plaques in a bigenic PSAPP mouse model appear and grow over a period of weeks before reaching a mature size. These data seem to be in apparent conflict with earlier work using the same technique on related mouse models (Meyer-Luehmann et al. 2008), where dense plaques were shown to reach their maximum size in about a day and thereafter maintain a status quo.

The present study also goes forward to propose a reason for this discrepancy. Amyloid imaging through large open-skull cranial windows (as utilized solely by Meyer-Luehmann and colleagues) seems to activate gliosis, in contrast to thinned-skull windows of ≈1/10th the size, where calvaria are merely thinned down to allow in vivo microscopy without exposing the dura mater. This seems logical, as activation of gliosis has been shown in several studies to be an important factor in limiting plaque growth (  Read more


  Comment by:  Bart De Strooper, ARF Advisor
Submitted 2 September 2009  |  Permalink Posted 2 September 2009

This is excellent work. The authors make elegantly the case that the procedures used to visualize amyloid plaques in vivo may strongly affect the generation and dynamics of the plaques. It is also of strong interest that interstitial Aβ peptide is such an important contributor to the plaque dynamics, as this is a rather small pool of total Aβ in the brain, and also highly dynamic and influenced by medication. Finally, the fact that 20-30 percent changes in that pool strongly affect the plaque formation should indeed raise hope that a therapeutic window exists for secretase inhibitors.

I strongly recommend the paper.

View all comments by Bart De Strooper


  Comment by:  Melanie Meyer-Luehmann
Submitted 24 September 2009  |  Permalink Posted 24 September 2009

In my opinion, the discussion above misses one important fact: Brad Hyman's group published already in 2001 that plaques do not grow over time and that there is a restriction on plaque growth (Christie et al., 2001). In that study, more than 300 plaques were analyzed with two-photon microscopy over a time period of up to five months, and the investigators found the majority of plaques remained unchanged in size over time. Even more importantly, the data were observed using the thinned-skull method, i.e., the same method used by Yan et al., 2009. Therefore, thinned-skull versus open-skull preparation alone cannot account for the opposing result.

View all comments by Melanie Meyer-Luehmann

  Comment by:  Jin-Moo Lee
Submitted 26 September 2009  |  Permalink Posted 28 September 2009

We appreciate the comments of Dr. Meyer-Luehmann. However, the absence of plaque growth reported in the Christie et al. (2001) paper is very consistent with the data reported in our recent paper (Yan et al, 2009). Although we observed marked plaque growth in six-month-old APP/PS1 mice (early in plaque pathogenesis), we saw little to no growth in 10-month-old APP/PS1 mice. Of note, the Christie et al. paper did not see plaque growth in 18-month-old (mean age) Tg2576 mice. Therefore, our observations in older animals who have more advanced pathology are in agreement with the Christie et al. paper.

References:
Christie RH, Bacskai BJ, Zipfel WR, Williams RM, Kajdasz ST, Webb WW, Hyman BT. Growth arrest of individual senile plaques in a model of Alzheimer's disease observed by in vivo multiphoton microscopy. J Neurosci. 2001 Feb 1;21(3):858-64. Abstract

View all comments by Jin-Moo Lee

  Comment by:  Chris Exley
Submitted 6 October 2009  |  Permalink Posted 6 October 2009

This and other research demonstrates the deposition of Aβ in vivo in an animal model. Do we know that the “structures” that are shown being formed are also the same structures that are identified histo- or immunochemically postmortem?

Thus, are we confident that what is observed is the full process that results in the structures that we identify classically as plaques postmortem?

The alternative is that we are observing one part of a process. In some instances what is deposited may eventually be removed or transformed to something else and it is this “something else” which we identify postmortem as senile plaques.

Are senile (neuritic) plaques simply deposits of Aβ, or are they more than this?

View all comments by Chris Exley


  Primary News: Seeing Is Believing—Plaque Growth Is Slow, Tapers With Age

Comment by:  Jason Frommer
Submitted 26 January 2011  |  Permalink Posted 26 January 2011
  I recommend this paper

As a graduate student who reviewed this subject in great detail for a journal club (see Meyer-Luehmann et al., 2008 and Yan et al., 2009), I am surprised at some of the opinions presented here after these most recent papers on plaque dynamics (Hefendehl et al., 2011; Burgold et al., 2010), which I think are interesting and thorough examinations of plaque growth in vivo. In contrast, when reviewing the initial paper on this topic from the Hyman Lab (Meyer-Luehmann et al., 2008), it became apparent to me and the people with whom I discussed it that the reason why they saw very rapid plaque appearance and no further plaque growth within 14 days was because of an artifact of incomplete dye labeling. If one inspects in detail Figure 1 in their paper, one can see that the plaque that “appeared” after 24 hours of dye injection was really present even before...  Read more

  Primary News: Seeing Is Believing—Plaque Growth Is Slow, Tapers With Age

Comment by:  Brian Bacskai, ARF Advisor, Bradley Hyman, ARF Advisor
Submitted 6 February 2011  |  Permalink Posted 6 February 2011

Several papers now have used multiphoton imaging to monitor plaques over time in AD transgenic models (Hefendehl et al., 2011; Burgold et al., 2010; Yan et al., 2009), following on the initial work we published in 2001 (Christie et al., 2001). Over the years we have imaged thousands of plaques using either “thin skull” or “coverslip” approaches in three different APP or APP/PS1 overexpressing models. The new papers, emerging from analogous work at Washington University and in Germany, show similar approaches to dissect the natural history of plaques in living animals.

Overall, there is general concurrence in our observations. It is obvious that animals initially have no plaques, then many months later have many plaques. What happens in between? We found that plaques form surprisingly quickly, then reach a near maximal size within days. The other groups, using slightly different models and...  Read more

Comments on Related Papers
  Related Paper: Growth arrest of individual senile plaques in a model of Alzheimer's disease observed by in vivo multiphoton microscopy.

Comment by:  John Hardy, ARF Advisor
Permalink
  I recommend this paper

An amazing technology used to show, once and for all, that plaques are dynamic structures. A great paper which subverts the huge literature seeking to correlate plaque numbers with clinical features. Pathology does not wait around to be counted!!!"

View all comments by John Hardy
  Submit a Comment on this Paper
Cast your vote and/or make a comment on this paper. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend this paper

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
 
 

REAGENTS/MATERIAL:
Double immunofluorescence: Sections were incubated overnight at 4°C in a combination of rabbit anti-Iba1 (Wako Chemicals) and mouse monoclonal anti-GFAP (Sigma).
Aß ELISA assay Microdialysis samples were analyzed for Aß1-x, Aßx-40, or Aßx-42 using species-specific sandwich ELISAs. Briefly, Aß1-x, Aßx-40, and Aßx-42 were captured using monoclonal antibodies targeted against amino acids 13-28 (m266), 35-40 (HJ2), or 33-42 (21F12) of Aß, respectively. The antibodies m266, 21F12, and 3D6 were gifts from Eli Lilly. For Aß1-x assays, a biotinylated N-terminal domain monoclonal antibody (3D6B) followed by streptavidin-poly-HRP-20 was used to detect (Fitzgerald). For Aßx-40 and Aßx-42 assays, a biotinylated central domain monoclonal antibody (HJ5.1B) followed by streptavidin poly-HRP-40 was used to detect (Fitzgerald)

Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad