Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: Papers of the Week
Annotation


Junn E, Lee KW, Jeong BS, Chan TW, Im JY, Mouradian MM. Repression of alpha-synuclein expression and toxicity by microRNA-7. Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13052-7. PubMed Abstract

Comments on Paper and Primary News
  Comment by:  Sebastien S. Hebert, Wim Mandemakers
Submitted 1 September 2009  |  Permalink Posted 1 September 2009

This paper adds to the growing evidence that microRNAs could be involved in neurodegenerative diseases. Here, Junn and colleagues provide interesting data suggesting that α-synuclein (SNCA) mRNA is regulated at the post-transcriptional level by miR-7, a microRNA enriched in the pituitary gland and expressed at relatively high levels in the brain. Similar to APP in Alzheimer’s, gene dosage effects of SNCA can cause familial Parkinson disease (PD). Thus, these new results raise the interesting possibility that microRNAs could play a role in genetic and sporadic PD.

The 3’UTR of human SNCA is quite long (approximately 1000 nt in length) and relatively well conserved, thus suggesting its biological importance. From various prediction programs found online (TargetScan, Pictar, miRBase, miRanda), a few microRNA candidates consistently stand out (e.g., miR-7 and miR-153). Here, the authors focus their efforts on miR-7. We would like to comment on some of the salient observations reported by the authors.

First, the authors show that overexpression of miR-7 in HEK293T cells causes...  Read more

  Submit a Comment on this Paper
Cast your vote and/or make a comment on this paper. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend this paper

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
 
 
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad