Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: Papers of the Week
Annotation


Jiang Q, Lee CY, Mandrekar S, Wilkinson B, Cramer P, Zelcer N, Mann K, Lamb B, Willson TM, Collins JL, Richardson JC, Smith JD, Comery TA, Riddell D, Holtzman DM, Tontonoz P, Landreth GE. ApoE promotes the proteolytic degradation of Abeta. Neuron. 2008 Jun 12;58(5):681-93. PubMed Abstract

  
Comments on Paper and Primary News
  Primary News: ApoE’s Secret Revealed? Protein Promotes Aβ Degradation

Comment by:  Yadong Huang, ARF Advisor
Submitted 17 June 2008  |  Permalink Posted 17 June 2008

The study by Jiang et al. is very interesting and important for better understanding Aβ-dependent roles of ApoE in the pathogenesis of Alzheimer disease. The authors presented strong evidence supporting a previously unappreciated action of ApoE in stimulating the proteolytic degradation of Aβ both extracellularly and in microglia. Their study also demonstrated that the lipidation status of ApoE was crucial for its ability to stimulate Aβ degradation, which is consistent with a previous observation that the lack of ABCA1, which leads to the formation of poorly lipidated ApoE particles, increased Aβ levels and deposition in brains of human APPFAD-expressing mice. Furthermore, a therapeutically important observation in this study is that treatment of human APPFAD transgenic mice with an LXR agonist dramatically reduced brain Aβ load and rescued the contextual memory deficits, probably by enhancing ApoE expression and its lipidation and, thus, Aβ degradation.

As for many other important studies, several questions remained unanswered in this study:

1. How does ApoE and its...  Read more


  Primary News: ApoE’s Secret Revealed? Protein Promotes Aβ Degradation

Comment by:  Radosveta Koldamova
Submitted 17 June 2008  |  Permalink Posted 17 June 2008

The inheritance of ApoE ε4 is so far the only discovered risk factor for late-onset AD, but the role of different ApoE isoforms is not clear yet. In a recent article published in Neuron, Qingguang Jiang et al. (working at Gary Landreth’s laboratory, Case Western Reserve University) report that ApoE plays a role in facilitating the proteolytic clearance of soluble Aβ from the brain. The capacity of ApoE to promote Aβ degradation is isoform specific and dependent upon its lipidation status.

ApoE is lipidated by the ATP-binding cassette transporter ABCA1, which acts in all cell types to transfer both phospholipids and cholesterol to ApoA-I in the periphery, and both ApoA-I and ApoE in brain. In this way, the lipidated ApoE, as well as ApoA-I, transport cholesterol and other lipids from astrocytes, which are necessary to maintain the synaptic plasticity and remodeling (3), to neurons. Three independent studies have already reported that global deletion of Abca1 in APP transgenic mice resulted in increased levels of amyloid deposition without a significant effect on Aβ generation....  Read more


  Primary News: ApoE’s Secret Revealed? Protein Promotes Aβ Degradation

Comment by:  Mary Jo LaDu
Submitted 24 June 2008  |  Permalink Posted 24 June 2008

Clearance of Aβ by neurons via an LRP-mediated pathway dependent on ApoE has been demonstrated (1). Clearance of fibrillar Aβ in THP-1 monocytes and microglia via scavenger-like receptors has also been shown (2,3). Both of these processes are mediated by cell-surface receptors. In the current paper, Jiang et al. propose an Aβ clearance mechanism independent of cell-surface receptors. They demonstrate that Aβ clearance occurs via proteolytic degradation in microglia (neprilysin) and extracellularly (IDE) by an ApoE-dependent process. Furthermore, this degradation requires lipidation of ApoE, presumably by ABCA1 as the addition of LXR agonists increases Aβ degradation. They also show the expected isoform differences in the ability of human ApoE to rescue the degradation of Aβ in primary microglia (E2>E3>E4).

However, at least one major question remains unclear. If degradation of Aβ, both in microglia and extracellularly, depends on ApoE, one would expect ApoE-knockout (ApoE-KO) mice to have increased levels of amyloid deposition and Aβ pathology. However, it has been previously...  Read more


  Comment by:  Takaomi Saido, ARF Advisor
Submitted 24 June 2008  |  Permalink Posted 25 June 2008
  I recommend this paper

  Primary News: ApoE’s Secret Revealed? Protein Promotes Aβ Degradation

Comment by:  Kumar Sambamurti
Submitted 8 January 2009  |  Permalink Posted 13 January 2009
  I recommend this paper
Comments on Related Papers
  Related Paper: Liver X receptor agonist treatment ameliorates amyloid pathology and memory deficits caused by high-fat diet in APP23 mice.

Comment by:  Gary Landreth
Submitted 21 May 2010  |  Permalink Posted 21 May 2010

The role of diet, and particularly dietary cholesterol, on AD risk and pathogenesis is of substantial interest and importance. The recent paper from the Lefterov and Koldamova lab that appears in the current issue of the Journal of Neuroscience sheds considerable new light on this topic, at least in mice. The authors treated APP23 mice for four months with a high-fat diet and found a remarkable fourfold increase in compact plaques in the hippocampus and cortex. There was a parallel increase in Aβ peptide levels. This is a striking demonstration of the effect of diet on amyloid deposition and clearance. Behavioral analyses revealed a diet-related impairment in memory and learning. A curious feature of the study was that there were no genotype-related differences in behavior in mice on the normal diets, a finding that conflicts with other reports. Overall, these findings verify and extend our previous understanding of the effects of high-fat intake in animal models of AD.

One of the major findings of the study is that the simultaneous treatment of the mice on the high-fat diets...  Read more


  Related Paper: Liver X receptor agonist treatment ameliorates amyloid pathology and memory deficits caused by high-fat diet in APP23 mice.

Comment by:  David Holtzman, Philip Verghese
Submitted 21 May 2010  |  Permalink Posted 21 May 2010

A high-fat diet alters cellular metabolic equilibrium and influences the risk of developing several metabolic diseases. The effect of a high-fat diet on the peripheral system is well studied, but to a much less extent in the CNS. However, in the last decade, several studies attempted to look at the effect of a high-fat diet on the brain, especially in the context of AD. These studies are important in understanding the role of a high-fat diet in the potential contribution to normal brain function and to neurodegeneration. Epidemiological and clinical data suggest that a correlation exists between lifestyle, including diet, and the development of AD (1-2). Further, experiments on animal models suggest that diet may have a direct effect on the pathology of the disease (3-5). A high-fat diet significantly aggravated Aβ and tau pathologies, decreased cognitive function, and increased dyslipidemia in transgenic APP mouse models (Tg2576, APPK670N, M671L/PS1M146V, and 3xTg-AD) (6-8). Dyslipidemia is one of the major contributing factors of all high-fat induced disease processes, and...  Read more
  Submit a Comment on this Paper
Cast your vote and/or make a comment on this paper. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend this paper

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
 
 
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad