 |
 |
Mi W, Pawlik M, Sastre M, Jung SS, Radvinsky DS, Klein AM, Sommer J, Schmidt SD, Nixon RA, Mathews PM, Levy E.
Cystatin C inhibits amyloid-beta deposition in Alzheimer's disease mouse models. Nat Genet.
2007 Dec;39(12):1440-2.
PubMed Abstract
|
 |
 |
 |
|
 |
 |
Comments on Paper and Primary News |
 |
  |
| |
Comment by: George Perry (Disclosure)
|
 |
 |
Submitted 12 December 2007
| Permalink
|
Posted 19 December 2007
|
 |
 |
I recommend this paper
|
 |
 |
 |
Comments on Related Papers |
 |
  |
| |
Related Paper: Abeta40 inhibits amyloid deposition in vivo.
Comment by: Hui Zheng
|
 |
 |
Submitted 30 January 2007
| Permalink
|
Posted 30 January 2007
|
 |
 |
This report unequivocally demonstrates that Aβ40 and Aβ42 peptides have opposite effects on amyloid deposition in vivo and that Aβ40 inhibits Aβ42-induced amyloidosis. These results nicely complement our data that reducing Aβ40, without increasing Aβ42, leads to accelerated plaque pathology ( Deng et al., 2006 and Wang et al., 2006). This is a welcome addition to the Alzforum discussion initiated by Peter Davies and Bart De Strooper last year concerning the pathogenic mechanisms of the PS1 FAD mutations. All data combined support the notion that a partial reduction of Aβ40 (and γ-secretase activity) may be the primary mechanism for the amyloid pathology seen in certain PS1 patients and may indeed apply to sporadic cases, as well. View all comments by Hui Zheng
|
 |

|
| |
Related Paper: Abeta40 inhibits amyloid deposition in vivo.
Comment by: Matthew Hass, Bruce Yankner, ARF Advisor
|
 |
 |
Submitted 6 February 2007
| Permalink
|
Posted 6 February 2007
|
 |
 |
Can Some Forms of Aβ Be Good?
The generation of BRI-Aβ40 and BRI-Aβ42 transgenic mice and the crossing of these mice with the Tg2576 APP-transgenic line has enabled Kim and colleagues to determine whether the Aβ40 and Aβ42 peptides could play different roles in plaque deposition. Increasing Aβ40 by crossing BRI-Aβ40 and Tg2576 transgenic mice resulted in decreased plaque deposition, in contrast to the increased deposition previously reported in the BRI-Aβ42/Tg2576 bitransgenic (McGowan et al., 2005). This anti-amyloidogenic “activity” of Aβ40 was confirmed by crossing BRI-Aβ40 with BRI-Aβ42 transgenic mice, which resulted in reduced amyloid deposition relative to BRI-Aβ42 alone. The dramatically decreased plaque number was paralleled by a similar reduction in insoluble, formic acid extractable Aβ, despite an overall increase in total Aβ. The authors then used an in vitro aggregation assay to support their suggestion that decreased amyloid deposition may relate to the ability of Aβ40 to decrease Aβ42 aggregation.
These experiments raise the possibility that Aβ40...
Read more
Can Some Forms of Aβ Be Good?
The generation of BRI-Aβ40 and BRI-Aβ42 transgenic mice and the crossing of these mice with the Tg2576 APP-transgenic line has enabled Kim and colleagues to determine whether the Aβ40 and Aβ42 peptides could play different roles in plaque deposition. Increasing Aβ40 by crossing BRI-Aβ40 and Tg2576 transgenic mice resulted in decreased plaque deposition, in contrast to the increased deposition previously reported in the BRI-Aβ42/Tg2576 bitransgenic (McGowan et al., 2005). This anti-amyloidogenic “activity” of Aβ40 was confirmed by crossing BRI-Aβ40 with BRI-Aβ42 transgenic mice, which resulted in reduced amyloid deposition relative to BRI-Aβ42 alone. The dramatically decreased plaque number was paralleled by a similar reduction in insoluble, formic acid extractable Aβ, despite an overall increase in total Aβ. The authors then used an in vitro aggregation assay to support their suggestion that decreased amyloid deposition may relate to the ability of Aβ40 to decrease Aβ42 aggregation.
These experiments raise the possibility that Aβ40 may be a protective molecule, and emphasize the importance of the Aβ42:Aβ40 ratio as a determinant of amyloid pathology. This is of particular concern as some γ-secretase inhibitors can actually increase the Aβ42:Aβ40 ratio, which could potentially increase plaque deposition despite reducing total Aβ levels. These findings also complement a recent report showing that some presenilin mutations increase amyloid pathology in mice by selectively decreasing Aβ40 without affecting Aβ42 (Deng et al., 2006, and Wang et al., 2006), implicating a potential pathogenic role for decreasing Aβ40.
This paper raises a number of interesting questions. Most importantly, what effect does decreased plaque load in the presence of overall increased Aβ in the BRI-Aβ40 have on behavior, especially the memory deficits observed in Tg2576 mice? This is a central question that bears on the issue of whether Aβ40 is truly protective. It is conceivable that increased levels of soluble Aβ could impair memory performance despite reduced plaque numbers, possibly by increasing the formation of Aβ oligomers. These mice might thus be a valuable resource for identifying the structural forms of Aβ that contribute to memory impairment. Biochemical and behavioral analysis of the BRI-Aβ40/Tg2576 brains may enable more precise information about the roles of Aβ monomers, trimers, oligomers, Aβ*56, protofibrils, and fibrils.
There were hints that the BRI-Aβ40 may have protective effects in addition to preventing plaque deposition, since the BRI-Aβ40/Tg2576 showed somewhat reduced premature death. However, this was not straightforward since the BRI-Aβ40/BRI-Aβ42 bitransgenic showed an even greater increase in premature death. In conclusion, these new observations provide another level of complexity to the Aβ story, and suggest that Aβ by any other name may not be the same.
References: Kim J, Onstead L, Randle S, Price R, Smithson L, Zwizinski C, Dickson DW, Golde T, McGowan E. Abeta40 inhibits amyloid deposition in vivo.
J Neurosci. 2007 Jan 17;27(3):627-33.
Abstract
McGowan E, Pickford F, Kim J, Onstead L, Eriksen J, Yu C, Skipper L, Murphy MP, Beard J, Das P, Jansen K, Delucia M, Lin WL, Dolios G, Wang R, Eckman CB, Dickson DW, Hutton M, Hardy J, Golde T. Abeta42 is essential for parenchymal and vascular amyloid deposition in mice.
Neuron. 2005 Jul 21;47(2):191-9.
Abstract
Deng Y, Tarassishin L, Kallhoff V, Peethumnongsin E, Wu L, Li YM, Zheng H. Deletion of presenilin 1 hydrophilic loop sequence leads to impaired gamma-secretase activity and exacerbated amyloid pathology.
J Neurosci. 2006 Apr 5;26(14):3845-54.
Abstract
Wang R, Wang B, He W, Zheng H. Wild-type presenilin 1 protects against Alzheimer disease mutation-induced amyloid pathology.
J Biol Chem. 2006 Jun 2;281(22):15330-6. Epub 2006 Mar 29.
Abstract
Bentahir M, Nyabi O, Verhamme J, Tolia A, Horre K, Wiltfang J, Esselmann H, De Strooper B. Presenilin clinical mutations can affect gamma-secretase activity by different mechanisms.
J Neurochem. 2006 Feb;96(3):732-42. Epub 2006 Jan 9.
Abstract
View all comments by Matthew Hass
View all comments by Bruce Yankner
|
 |

|
| |
Related Paper: Abeta40 inhibits amyloid deposition in vivo.
Comment by: Bruce Yankner, ARF Advisor
|
 |
 |
Submitted 6 February 2007
| Permalink
|
Posted 6 February 2007
|
 |
 |
I recommend this paper
|
 |

|
| |
Related Paper: Abeta40 inhibits amyloid deposition in vivo.
Comment by: Rudy Castellani, Hyoung-gon Lee, George Perry, ARF Advisor (Disclosure), Mark A. Smith (Disclosure), Xiongwei Zhu
|
 |
 |
Submitted 8 March 2007
| Permalink
|
Posted 8 March 2007
|
 |
 |
Amyloid: Getting Less Toxic Every Day
The Alternate Amyloid Hypothesis (1,2), whereby amyloid-β (Aβ) serves as a protective response in the pathogenesis of AD, is supported by this recent paper showing that Aβ is not responsible for the cognitive and pathological changes that are pathognomonic for AD (3). Briefly, in this study, Aβ40 dramatically reduces Aβ deposition (60-90 percent compared with Tg2576 mice) and rescues the premature-death phenotypes of Tg2576 mice. The important question is whether pathological changes observed in Tg2576 mice (e.g., gliosis, synapse degeneration, cognitive deficits) are altered in Aβ40/Tg2576 mice. Interestingly and most importantly, the same research group reported no cognitive improvement in Aβ40/Tg2576 mice compared with Tg2576 mice (4). In this regard, other studies have found that the cognitive function is relatively intact in APP transgenic mice despite massive accumulation of Aβ including soluble and insoluble forms in brain (5,6). Therefore, the role of Aβ in the pathogenesis of AD should be reassessed. It really does appear...
Read more
Amyloid: Getting Less Toxic Every Day
The Alternate Amyloid Hypothesis (1,2), whereby amyloid-β (Aβ) serves as a protective response in the pathogenesis of AD, is supported by this recent paper showing that Aβ is not responsible for the cognitive and pathological changes that are pathognomonic for AD (3). Briefly, in this study, Aβ40 dramatically reduces Aβ deposition (60-90 percent compared with Tg2576 mice) and rescues the premature-death phenotypes of Tg2576 mice. The important question is whether pathological changes observed in Tg2576 mice (e.g., gliosis, synapse degeneration, cognitive deficits) are altered in Aβ40/Tg2576 mice. Interestingly and most importantly, the same research group reported no cognitive improvement in Aβ40/Tg2576 mice compared with Tg2576 mice (4). In this regard, other studies have found that the cognitive function is relatively intact in APP transgenic mice despite massive accumulation of Aβ including soluble and insoluble forms in brain (5,6). Therefore, the role of Aβ in the pathogenesis of AD should be reassessed. It really does appear to be becoming less toxic [sic!] every day.
References: 1. Lee HG, Casadesus G, Zhu X, Takeda A, Perry G, Smith MA. Challenging the amyloid cascade hypothesis: senile plaques and amyloid-beta as protective adaptations to Alzheimer disease.
Ann N Y Acad Sci. 2004 Jun;1019:1-4. Review.
Abstract
2. Lee HG, Zhu X, Nunomura A, Perry G, Smith MA. Amyloid beta: the alternate hypothesis.
Curr Alzheimer Res. 2006 Feb;3(1):75-80. Review.
Abstract
3. Castellani RJ, Lee HG, Zhu X, Nunomura A, Perry G, Smith MA. Neuropathology of Alzheimer disease: pathognomonic but not pathogenic.
Acta Neuropathol (Berl). 2006 Jun;111(6):503-9. Epub 2006 Apr 27.
Abstract
4. Janus C, Kim J, Hanna A et al. Dissociation between amyloid pathology and memory impairment Alzheimer's & Dementia, 2(3 (Supplement)), S85-S86 (2006).
5. Bizon J, Prescott S, Nicolle MM. Intact spatial learning in adult Tg2576 mice.
Neurobiol Aging. 2007 Mar;28(3):440-6. Epub 2006 Feb 28.
Abstract
6. Savonenko AV, Xu GM, Price DL, Borchelt DR, Markowska AL. Normal cognitive behavior in two distinct congenic lines of transgenic mice hyperexpressing mutant APP SWE.
Neurobiol Dis. 2003 Apr;12(3):194-211.
Abstract
View all comments by Rudy Castellani
View all comments by Hyoung-gon Lee
View all comments by George Perry
View all comments by Mark A. Smith
View all comments by Xiongwei Zhu
|
 |

|
| |
Related Paper: Abeta40 inhibits amyloid deposition in vivo.
Comment by: Jason Eriksen
|
 |
 |
Submitted 9 October 2007
| Permalink
|
Posted 11 October 2007
|
 |
 |
I recommend this paper
|
 |

|
| |
Related Paper: Cystatin C modulates cerebral beta-amyloidosis.
Comment by: George Perry (Disclosure)
|
 |
 |
Submitted 12 December 2007
| Permalink
|
Posted 19 December 2007
|
 |
 |
I recommend this paper
|
 |

|
| |
Related Paper: Transthyretin protects Alzheimer's mice from the behavioral and biochemical effects of Abeta toxicity.
Comment by: Chris Link
|
 |
 |
Submitted 19 February 2008
| Permalink
|
Posted 19 February 2008
|
 |
 |
Transthyretin is an abundant blood protein that binds and transports thyroid hormones. It has been known for a number of years that transthyretin can also bind the β amyloid peptide (Aβ) associated with Alzheimer disease. Both in vitro studies and in vivo studies using the nematode worm C. elegans have shown that transthyretin can inhibit the aggregation of Aβ into insoluble amyloid fibers. This study by Buxbaum et al. uses transgenic mouse models to demonstrate that increased expression of transthyretin can protect transgenic mice from behavioral deficits caused by Aβ expression, and loss of transthyretin expression exacerbates these behavioral deficits. These studies support the idea that transthyretin might have a natural role as a chaperone protein for Aβ, serving to combat the aggregation of Aβ into amyloid or some other toxic form.
Could manipulation of transthyretin expression in people help protect them from Alzheimer disease? This is a tricky question, because paradoxically transthyretin itself is associated with amyloid disease. Familial amyloid...
Read more
Transthyretin is an abundant blood protein that binds and transports thyroid hormones. It has been known for a number of years that transthyretin can also bind the β amyloid peptide (Aβ) associated with Alzheimer disease. Both in vitro studies and in vivo studies using the nematode worm C. elegans have shown that transthyretin can inhibit the aggregation of Aβ into insoluble amyloid fibers. This study by Buxbaum et al. uses transgenic mouse models to demonstrate that increased expression of transthyretin can protect transgenic mice from behavioral deficits caused by Aβ expression, and loss of transthyretin expression exacerbates these behavioral deficits. These studies support the idea that transthyretin might have a natural role as a chaperone protein for Aβ, serving to combat the aggregation of Aβ into amyloid or some other toxic form.
Could manipulation of transthyretin expression in people help protect them from Alzheimer disease? This is a tricky question, because paradoxically transthyretin itself is associated with amyloid disease. Familial amyloid polyneuropathy, a fatal disease, is caused by mutations in transthyretin that cause the transthyretin protein itself to form amyloid. Normal (not mutated) transthyretin can also form amyloid deposits in the heart and brain, as is observed in cases of systemic senile amyloidosis. Interestingly, small heat shock proteins, classic chaperone proteins that can inhibit Aβ from forming amyloid, also form insoluble deposits by themselves under appropriate conditions. Perhaps proteins evolved to interact with aggregation-prone proteins become predisposed to aggregate themselves. These considerations suggest that manipulation of the expression transthyretin (or other putative Aβ chaperone proteins) might be therapeutic, but might require careful titration of the expression of these proteins. This study also raises the possibility that reduced expression of transthyretin might be a risk factor for developing Alzheimer disease.
View all comments by Chris Link
|
 |

|
| |
Related Paper: Transthyretin protects Alzheimer's mice from the behavioral and biochemical effects of Abeta toxicity.
Comment by: Joao Sousa
|
 |
 |
Submitted 10 March 2008
| Permalink
|
Posted 11 March 2008
|
 |
 |
Transthyretin (TTR) is a blood and cerebrospinal fluid (CSF) carrier protein for thyroxine and retinol (in association with the retinol-binding protein). In the last few years an increasing number of reports have linked TTR to Alzheimer disease (AD). Specifically, TTR has been suggested as a neuroprotective factor for disease progression, given its ability to sequester and clear the amyloid-β peptide (Aβ) out of the brain.
This article generally confirms the previous reports for a role of TTR in AD. The study shows that 1) in the absence of TTR there is increased amyloid load in the brain of APP transgenic mice; 2) overexpression of 90 copies of the human TTR gene in APP transgenic mice decreases amyloid load; 3) TTR overexpression in APP transgenic mice reverts the cognitive impairment normally observed in this animal model of AD. Of note, this study confirms a previous one (1) in which the absence of TTR was shown to accelerate the memory decline normally associated with age. This may be related to a TTR function that is ”independent of its interaction with Aβ,” as...
Read more
Transthyretin (TTR) is a blood and cerebrospinal fluid (CSF) carrier protein for thyroxine and retinol (in association with the retinol-binding protein). In the last few years an increasing number of reports have linked TTR to Alzheimer disease (AD). Specifically, TTR has been suggested as a neuroprotective factor for disease progression, given its ability to sequester and clear the amyloid-β peptide (Aβ) out of the brain.
This article generally confirms the previous reports for a role of TTR in AD. The study shows that 1) in the absence of TTR there is increased amyloid load in the brain of APP transgenic mice; 2) overexpression of 90 copies of the human TTR gene in APP transgenic mice decreases amyloid load; 3) TTR overexpression in APP transgenic mice reverts the cognitive impairment normally observed in this animal model of AD. Of note, this study confirms a previous one (1) in which the absence of TTR was shown to accelerate the memory decline normally associated with age. This may be related to a TTR function that is ”independent of its interaction with Aβ,” as recognized by Buxbaum et al.
This last observation points to a function of TTR in behavior that may be unrelated to its ability to sequester Aβ and prevent Aβ deposition. Therefore, the role of TTR in preventing Aβ deposition may not be connected to the cognitive performance improvement observed in APP transgenic mice overexpressing TTR.
As for the role of TTR in preventing amyloid deposition, shown in at least two studies (this one and [2]), it is of relevance to discuss the origin of TTR within the brain. Within the brain, TTR expression is restricted to the choroid plexus (from where it is secreted towards the CSF) (2) and the meninges (4). It is therefore important to clarify whether the overexpression of TTR (90 copies of the gene) in mice originates the synthesis of the protein in other, “non-natural” sites of the brain parenchyma, which may be misleading in interpreting the role of TTR in AD.
TTR, among other CSF proteins (cystatin C, apolipoprotein J, and insulin growth factor 1, [5-7]) is reported to be protective in AD, not only by sequestering Aβ from reaching concentrations that may promote deposition as amyloid, but also by facilitating Aβ clearance out of the brain through receptors located both in the choroid plexus (7) and in the endothelial cells of the blood-brain barrier (8). It is therefore reasonable to suggest that increasing the levels of these proteins might be a therapeutic approach in AD. However, this possibility raises main concerns, of which two should certainly be investigated carefully. First, all these proteins have well-described physiological functions, some of which relate to behavior. Increasing their concentrations may pose health risks higher than the potential benefit for AD. Second, it is necessary to further study whether and how these CSF proteins can successfully reach the major brain sites of amyloid deposition in AD.
References: 1. Sousa JC, Marques F, Dias-Ferreira E, Cerqueira JJ, Sousa N, Palha JA. Transthyretin influences spatial reference memory. Neurobiol Learn Mem. 2007 Oct;88(3):381-5. Abstract
2. Choi SH, Leight SN, Lee VM, Li T, Wong PC, Johnson JA, Saraiva MJ, Sisodia SS. Accelerated Abeta deposition in APPswe/PS1deltaE9 mice with hemizygous deletions of TTR (transthyretin). J Neurosci. 2007 Jun 27;27(26):7006-10. Abstract
3. Sousa JC, Cardoso I, Marques F, Saraiva MJ, Palha JA. Transthyretin and Alzheimer's disease: where in the brain? Neurobiol Aging. 2007 May;28(5):713-8. Abstract
4. Blay P, Nilsson C, Owman C, Aldred A, Schreiber G. Transthyretin expression in the rat brain: effect of thyroid functional state and role in thyroxine transport. Brain Res. 1993 Dec 31;632(1-2):114-20. Abstract
5. Mi W, Pawlik M, Sastre M, Jung SS, Radvinsky DS, Klein AM, Sommer J, Schmidt SD, Nixon RA, Mathews PM, Levy E. Cystatin C inhibits amyloid-beta deposition in Alzheimer's disease mouse models. Nat Genet. 2007 Dec;39(12):1440-2. Abstract
6. Bell RD, Sagare AP, Friedman AE, Bedi GS, Holtzman DM, Deane R, Zlokovic BV. Transport pathways for clearance of human Alzheimer's amyloid beta-peptide and apolipoproteins E and J in the mouse central nervous system. J Cereb Blood Flow Metab. 2007 May;27(5):909-18. Abstract
7. Carro E, Spuch C, Trejo JL, Antequera D, Torres-Aleman I. Choroid plexus megalin is involved in neuroprotection by serum insulin-like growth factor I. J Neurosci. 2005 Nov 23;25(47):10884-93. Abstract
8. Deane R, Zlokovic BV. Role of the blood-brain barrier in the pathogenesis of Alzheimer's disease. Curr Alzheimer Res. 2007 Apr;4(2):191-7. Abstract
View all comments by Joao Sousa
|
 |

|
| |
Related Paper: Transthyretin protects Alzheimer's mice from the behavioral and biochemical effects of Abeta toxicity.
Comment by: Efrat Levy
|
 |
 |
Submitted 21 March 2008
| Permalink
|
Posted 21 March 2008
|
 |
 |
This paper shows that overexpression of wild-type human transthyretin (TTR) in APP transgenic mice ameliorates Aβ amyloid deposition and improves cognitive function. Targeted silencing of the mouse endogenous TTR gene accelerated the development of the neuropathologic phenotype, confirming recent reports of enhanced TTR expression in the brain of APP transgenic mice and enhanced Aβ amyloid deposition in these mice lacking TTR. Using in vitro techniques, a direct binding between TTR and Aβ is shown, extending previous in vitro studies by Alexander L. Scharzman and Dmitry Goldgaber that showed that binding of TTR to Aβ results in decreased amyloid formation. While the precise molecular nature of the transthyretin-binding species of Aβ was not defined, the data show that tetrameric TTR binds aggregated Aβ. The findings suggest that a physical interaction between TTR and Aβ prevents the toxicity and plaque formation by interfering with aggregation of Aβ species larger than monomers. While the endogenous protein most likely has an ongoing role in prevention of amyloid formation,...
Read more
This paper shows that overexpression of wild-type human transthyretin (TTR) in APP transgenic mice ameliorates Aβ amyloid deposition and improves cognitive function. Targeted silencing of the mouse endogenous TTR gene accelerated the development of the neuropathologic phenotype, confirming recent reports of enhanced TTR expression in the brain of APP transgenic mice and enhanced Aβ amyloid deposition in these mice lacking TTR. Using in vitro techniques, a direct binding between TTR and Aβ is shown, extending previous in vitro studies by Alexander L. Scharzman and Dmitry Goldgaber that showed that binding of TTR to Aβ results in decreased amyloid formation. While the precise molecular nature of the transthyretin-binding species of Aβ was not defined, the data show that tetrameric TTR binds aggregated Aβ. The findings suggest that a physical interaction between TTR and Aβ prevents the toxicity and plaque formation by interfering with aggregation of Aβ species larger than monomers. While the endogenous protein most likely has an ongoing role in prevention of amyloid formation, its concentration may not be sufficient under pathological conditions that favor amyloid formation. It is suggested that increasing cerebral TTR synthesis is a potential therapeutic/prophylactic approach to human Alzheimer disease. However, induction of expression of the full-length protein may prove to have negative effects, especially because wild-type TTR can form amyloid fibrils. It is more likely that for therapeutic purposes, a biologically active peptidomimetic compound with the Aβ-binding properties of TTR can be designed. It is of special interest that potentially amyloidogenic proteins can bind to each other and inhibit amyloid fibril formation. Aβ has a high tendency to form amyloidogenic aggregations, and the formation of amyloid fibrils is inhibited by binding to the tetrameric form of wild-type TTR. Unlike TTR, only a Leu68Gln variant of cystatin C can form amyloid fibrils. However, both wild-type and variant cystatin C bind monomeric soluble Aβ and inhibit Aβ oligomerization and fibril formation. Future studies will show whether cerebral or systemic amyloidoses can be halted or prevented by modulation of expression of another amyloidogenic protein, or more likely by a drug that will be developed to mimic the function of such a protein.
View all comments by Efrat Levy
|
 |

|
| |
Related Paper: Cerebral amyloid angiopathy and parenchymal amyloid deposition in transgenic mice expressing the Danish mutant form of human BRI2.
Comment by: Nikolaos K. Robakis
|
 |
 |
Submitted 29 May 2008
| Permalink
|
Posted 29 May 2008
|
 |
 |
This paper shows the generation of a novel model of cerebral (non-Aβ) amyloid deposition. The authors generated transgenic mice expressing a mutant form of the BRI gene, found in patients affected by familial Danish dementia (FDD). FDD is a rare inherited disease that causes progressive dementia that, like AD, is neuropathologically characterized by amyloid deposition (ADan), neurofibrillary tangle formation (identical to that seen in AD), and neuronal cell loss. This model provides an exciting new tool in which to study the abnormal changes in the brain that lead to dementia. Comparing the similarities and differences of these two related neurological diseases may provide important clues to how AD develops. View all comments by Nikolaos K. Robakis
|
 |

|
| |
Related Paper: BRI2 (ITM2b) inhibits Abeta deposition in vivo.
Comment by: Bernardino Ghetti, Ruben Vidal
|
 |
 |
Submitted 7 June 2008
| Permalink
|
Posted 7 June 2008
|
 |
 |
This is a beautiful paper from Dr. Golde's lab showing for the first time that a peptide derived from the BRI2 gene is able to reduce cerebral Aβ deposition in vivo in an AD mouse model and that the same peptide inhibits Aβ aggregation in vitro. The peptide is a 23 amino acid long (Bri2-23) C-terminal fragment generated by the pro-protein convertases processing (Kim et al., 1999) of BRI2, a 266-amino-acid, type-II single transmembrane domain protein (Vidal et al., 1999). Using recombinant adeno-associated virus 1 (rAAV1)-mediated gene transfer in TgCRND8 mice, the investigators show a dramatic suppressive effect of the BRI2 transgene—and a BRI2-Aβ1–40 fusion protein (Kim et al., 2007)—on parenchymal Aβ accumulation. Importantly, the investigators found no evidence for alterations in the steady-state levels of APP or APP CTFβ in TgCRND8 mice expressing the virally delivered BRI2-Aβ1–40 or BRI2 transgenes, but rather that the Bri2–23 peptide could directly inhibit Aβ1–42 fibrillogenesis in vitro.
Mutations in the BRI2 gene cause neurodegenerative diseases characterized by...
Read more
This is a beautiful paper from Dr. Golde's lab showing for the first time that a peptide derived from the BRI2 gene is able to reduce cerebral Aβ deposition in vivo in an AD mouse model and that the same peptide inhibits Aβ aggregation in vitro. The peptide is a 23 amino acid long (Bri2-23) C-terminal fragment generated by the pro-protein convertases processing (Kim et al., 1999) of BRI2, a 266-amino-acid, type-II single transmembrane domain protein (Vidal et al., 1999). Using recombinant adeno-associated virus 1 (rAAV1)-mediated gene transfer in TgCRND8 mice, the investigators show a dramatic suppressive effect of the BRI2 transgene—and a BRI2-Aβ1–40 fusion protein (Kim et al., 2007)—on parenchymal Aβ accumulation. Importantly, the investigators found no evidence for alterations in the steady-state levels of APP or APP CTFβ in TgCRND8 mice expressing the virally delivered BRI2-Aβ1–40 or BRI2 transgenes, but rather that the Bri2–23 peptide could directly inhibit Aβ1–42 fibrillogenesis in vitro.
Mutations in the BRI2 gene cause neurodegenerative diseases characterized by cerebral amyloid deposition (Vidal et al., 1999, 2000), and transgenic mice overexpressing a mutant form of BRI2 show cerebral amyloid (ADan) deposition (Vidal et al., 2008). Interestingly, the amino-termini of the amyloid peptides (ABri and ADan) contain the amino acid sequence of the anti-amyloidogenic peptide Bri2-23. The unexpected findings of Kim et al. generate even more questions regarding the normal role of the still poorly characterized BRI2 gene and how mutations in BRI2 lead to neurodegeneration. More work is needed to determine whether the Bri2-23 peptide is able to depolymerize mature Aβ fibrils and if the anti-amyloidogenic properties of Bri2-23 are also shared by the C-terminal peptides generated by other members of the BRI gene family (Vidal et al., 2001). The use of increasing levels of BRI2 in the brain for the treatment of AD as proposed by Kim and collaborators (Kim et al., 2008) is an interesting idea; however, we believe that since the normal function of BRI2 (and the Bri2-23 peptide) is not known, caution should be taken in attempting therapies based on the overexpression of BRI2 alone.
References: Kim SH, Wang R, Gordon DJ, Bass J, Steiner DF, Lynn DG, Thinakaran G, Meredith SC, Sisodia SS. Furin mediates enhanced production of fibrillogenic ABri peptides in familial British dementia. Nat Neurosci. 1999 Nov;2(11):984-8. Abstract
Kim J, Onstead L, Randle S, Price R, Smithson L, Zwizinski C, Dickson DW, Golde T, McGowan E. Abeta40 inhibits amyloid deposition in vivo. J Neurosci. 2007 Jan 17;27(3):627-33. Abstract
Vidal R, Frangione B, Rostagno A, Mead S, Révész T, Plant G, Ghiso J. A stop-codon mutation in the BRI gene associated with familial British dementia. Nature. 1999 Jun 24;399(6738):776-81. Abstract
Vidal R, Revesz T, Rostagno A, Kim E, Holton JL, Bek T, Bojsen-Møller M, Braendgaard H, Plant G, Ghiso J, Frangione B. A decamer duplication in the 3' region of the BRI gene originates an amyloid peptide that is associated with dementia in a Danish kindred. Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4920-5. Abstract
Vidal R, Calero M, Révész T, Plant G, Ghiso J, Frangione B. Sequence, genomic structure and tissue expression of Human BRI3, a member of the BRI gene family. Gene. 2001 Mar 21;266(1-2):95-102. Abstract
Vidal R, Barbeito AG, Miravalle L, Ghetti B. Cerebral Amyloid Angiopathy and Parenchymal Amyloid Deposition in Transgenic Mice Expressing the Danish Mutant Form of Human BRI(2). Brain Pathol. 2008 Apr 10; Abstract
View all comments by Bernardino Ghetti
View all comments by Ruben Vidal
|
 |

|
| |
Related Paper: BRI2 (ITM2b) inhibits Abeta deposition in vivo.
Comment by: Joel Buxbaum
|
 |
 |
Submitted 13 June 2008
| Permalink
|
Posted 13 June 2008
|
 |
 |
There are between 50 and 100 experimental manipulations that have been shown to alter the pathologic and/or behavioral phenotypes of various transgenic models of human Alzheimer disease. The description in this paper of the effect of the Bri protein, the agent of familial British dementia, by Todd Golde and his colleagues, is the latest example in which overexpressing a transgene encoding a wild-type protein in TgCRND8 model AD mice has an ameliorative effect on the AD phenotype. These observations are quite striking in the context of three other instances in which the expressed protein suppressing the AD phenotype is a precursor of a protein in which the wild-type or a mutant form is the proximal cause of human CNS or systemic amyloidosis. Similar effects have been found for cystatin C in Aβ Tg2576 ( Mi et al., 2007) or APP23 ( Kaeser et al., 2007) double transgenics; animals in which gelsolin, the precursor in the Finnish form of familial amyloidotic polyneuropathy (
Read more
There are between 50 and 100 experimental manipulations that have been shown to alter the pathologic and/or behavioral phenotypes of various transgenic models of human Alzheimer disease. The description in this paper of the effect of the Bri protein, the agent of familial British dementia, by Todd Golde and his colleagues, is the latest example in which overexpressing a transgene encoding a wild-type protein in TgCRND8 model AD mice has an ameliorative effect on the AD phenotype. These observations are quite striking in the context of three other instances in which the expressed protein suppressing the AD phenotype is a precursor of a protein in which the wild-type or a mutant form is the proximal cause of human CNS or systemic amyloidosis. Similar effects have been found for cystatin C in Aβ Tg2576 ( Mi et al., 2007) or APP23 ( Kaeser et al., 2007) double transgenics; animals in which gelsolin, the precursor in the Finnish form of familial amyloidotic polyneuropathy ( Hirko et al., 2007), has been expressed in Tg2576 and APP695/mutantPS1 mice transgenic for Aβ, and our own work describing the profound effect of overexpressing a transgene encoding wild-type human transthyretin in the APP23 model of AD ( Buxbaum et al., 2008).
Why should these proteins in particular have such an effect? If we assume that the excessive generation of Aβ1-42, its misfolding and subsequent aggregation into toxic oligomers and fibrils, is intrinsic to AD (as represented by these models), there are a variety of possible mechanisms that could explain the results. The overexpressed amyloid precursors may have a direct interaction with the Aβ fragment or its oligomers in the brain to either disaggregate them or accelerate their aggregation into larger non-toxic multimers that can be more rapidly engulfed and degraded by glia. They may bind to some factor that is critical for the generation of Aβ or its aggregation, reducing the concentration of fibrillogenic precursor. They may interfere with a downstream process responsible for neurotoxicity, having no impact on aggregation per se but a strong effect on the behavioral phenotype.
In the gelsolin instance, the gene was introduced by hydrodynamic gene delivery and appeared to only be expressed in the periphery, not in the brain. Hence, its effect is hypothesized to be based on its action as a “plasma sink” for Aβ, increasing its transport from the brain to the systemic circulation, thereby decreasing the effective intracerebral Aβ concentration. A similar notion involving the CSF compartment has previously been proposed for the transthyretin effect. We think this unlikely (see below).
The observations could be trivial since it is also possible that the effects may be mouse specific and have no relationship to human disease. Equally unlikely is the possibility that the apparent proclivity of this set of proteins to have the observed effect may represent a strong ascertainment bias in which the proteins in question are only a small sample of the universe of proteins that can do this, and the molecules that have been assayed for this property have been chosen precisely because they are amyloid precursors. For the purposes of the rest of my discussion I will ignore the last two possibilities and assume that the observations in the double transgenics and the gelsolin animals have some biologic relevance.
Transthyretin, cystatin C, and gelsolin have been found in Aβ deposits in human AD brains. It has also been shown that in vitro the proteins directly interact with some form of Aβ, in the case of transthyretin most likely a subfibrillar aggregate. These proteins are apparently protective. We believe that their intrinsic amyloidogenicity indicates that they are predisposed to transiently expose their internal hydrophobic sequences to the external (with respect to the protein’s structure) aqueous milieu. If this occurs for a prolonged period or in a substantial portion of their conformational ensemble—conditions more likely for mutant forms of the proteins—the molecules will self-aggregate. However, if the molecule interacts with the hydrophobic portion of another similarly predisposed protein, the interaction can create a hydrophobic micro-environment for that protein domain. If the time frame is short enough, the remaining portions of the two interacting molecules re-fold to re-submerge the hydrophobic region into the internal portion of the native folded molecule. This process most resembles domain swapping but involves regions smaller than full domains and is temporally much more transient. Thus, there could be a series of proteins that are capable of protectively interacting with Aβ or its pre-toxic aggregates serving as “amateur” or “non-professional” chaperones for this particular cargo molecule.
Why should such a mechanism be necessary? The relative frequency of neurodegenerative disorders related to gain of toxic function by misfolded proteins suggests that the usual proteostatic mechanisms operating in neurons are limited. The relative hypersensitivity of neurons to hyperthermia is consistent with this view. It is apparent that during the evolution of the central nervous system, selection has favored the production of limited amounts of functional small peptides. These, because of their size, are less likely to misfold, and are secreted in vesicles that are at neuronal termini, thus not exposing the rest of the cellular milieu to high concentrations of potentially misfolded molecules.
These mechanisms serve the neuron well under most circumstances, unless there are destabilizing mutations in intrinsic neuronal proteins (e.g., α-synuclein, Huntingtin, SOD1). They may also fail when there is an interaction with an infectious agent capable of re-templating the folding of an endogenous protein. The system itself may become less effective (as in aging) for as yet unknown reasons. Under such circumstances, other mechanisms, such as those employing the “amateurs,” are recruited to cope. It is noteworthy that the transcription of transthyretin in the brain has been seen to increase in transgenic AD models. Interestingly, the AD models all require some degree of overexpression of the mutant Aβ construct, suggesting that the intrinsic murine neuronal proteostatic system functions well until it is overloaded. Old mice do not have an AD equivalent in the absence of overexpression of a human AD gene.
It is also possible that the amyloidogenic proteins are not truly “non-professionals” but represent previously unrecognized elements of the neuronal chaperome. Richard Morimoto’s work in C. elegans is consistent with such a hypothesis in that mutations in known elements of the proteostatic machinery reduce the number of glutamines required to produce a neuropathologic phenotype in a poly-Q model of Huntington’s disease, but the effects of such mutations are not seen until the system is stressed, for example, by a misfolded protein challenge [see Bar Harbor Report 2007]. More broadly, cellular proteostasis networks and their role in health and disease are elegantly reviewed in Balch et al., 2008.
Can these notions be experimentally tested for the proteins discussed here? Each observation should be validated by silencing the gene in question. Thus far, only deletion of the transthyretin gene has been tested for its effect on the development of a model of human Aβ transgene-induced murine AD. It accelerated the development of Aβ deposits in two different transgenic models, displaying a gene dose effect strongly supporting the notion that the observations were biologically relevant. If homozygous silencing of the gene in question is lethal, the effect of hemizygous silencing or siRNA knockdown of the gene on amplifying the Aβ phenotype should be reproduced as independent validation of the effect of the particular protein in question.
The protein should be tested for its ability to bind to Aβ in vitro by some standard assay of protein interaction, and the nature of the molecular species of both the “chaperone” protein and Aβ involved in the binding should be defined.
The protein should quantitatively inhibit the cytotoxicity of Aβ to neuronally derived targets at concentrations consistent with those attainable in vivo.
Most difficult, but certainly most definitive, would be the demonstration of complexes between the protein and Aβ isolated from the target tissue of animals expressing both transgenes and controls.
It would be desirable to determine whether introduction of the gene encoding the protein of interest somewhere in the course of the disease, rather than from conception, would have an impact on the development of the AD phenotype, suggesting that there might be some elements of these interactions that could be therapeutically exploitable. While it is conceivable that the observations made with respect to these four amyloid precursors are the result of ascertainment bias, until such bias is demonstrated the limits of the phenomena should be precisely defined and the underlying chemistry and biology thoroughly explored to determine if there is any “there” there.
View all comments by Joel Buxbaum
|
 |
 |
|
|
 |