Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: Papers of the Week
Annotation


Liu Q, Zerbinatti CV, Zhang J, Hoe HS, Wang B, Cole SL, Herz J, Muglia L, Bu G. Amyloid precursor protein regulates brain apolipoprotein E and cholesterol metabolism through lipoprotein receptor LRP1. Neuron. 2007 Oct 4;56(1):66-78. PubMed Abstract, View on AlzSWAN

  
Comments on Paper and Primary News
  Comment by:  Radosveta Koldamova
Submitted 10 October 2007  |  Permalink Posted 10 October 2007

The study by Liu et al. shines a new light on the connection between cholesterol metabolism and APP processing. However, at this time the story is reversed—now it appears that APP proteolytic fragments are regulating cholesterol levels in brain and inside the cells. In a series of elegant experiments, the authors describe a mechanism by which the C-terminal fragment of APP, named AICD, modulates brain ApoE and cholesterol metabolism by directly regulating the expression and function of the lipoprotein receptor LRP1. Knocking out APP/APLP2 or components of the γ-secretase complex significantly affected the expression of LRP1, as well as ApoE and intracellular cholesterol levels. These alterations were partially restored by forced expression of AICD. Finally, Liu et al. provide evidence that deletion of LRP1 in forebrain neurons of adult mice significantly increased ApoE levels, while cholesterol levels were conversely decreased.

What makes this study powerful is that, to confirm their in-vitro findings, the authors have used numerous mutated cell lines, including APP/APPL2-DKO...  Read more


  Comment by:  Sanjay W. Pimplikar
Submitted 10 October 2007  |  Permalink Posted 10 October 2007

AICD Rules!
Coming on the heels of the report that AICD represses transcription of EGF-receptor (see Zhang et al., 2007), this paper now demonstrates that AICD also represses transcription of LRP1. The role of AICD as a transcriptional regulator had its share of skeptics (Hébert et al., 2006), but together the two studies convincingly support the role of AICD as it was conceived originally (Cao and Sudhof, 2001; Gao and Pimplikar, 2001). In the present studies, Liu et al. used multiple approaches to show that AICD indeed modulates LRP1 expression at the transcriptional level.

The significance of these observations in terms of AD pathogenesis is unclear and needs future studies. Nonetheless, it is becoming clear that AICD, long neglected in favor of its Aβ cousin, is finally commanding attention, and respect, in its own right. The amyloid hypothesis tries to explain, not always...  Read more


  Comment by:  Marcus O. W. Grimm, Tobias Hartmann
Submitted 11 October 2007  |  Permalink Posted 11 October 2007

The work by Bu et al. significantly—and elegantly—extends our understanding of the role of APP metabolism in lipid regulation. Their experiments clearly show that γ-secretase-mediated processing of APP regulates LRP1 transcription and hence one essential aspect of cellular cholesterol (and general lipid) homeostasis. AICD expression in APP or PS knockouts nicely restored LRP1 regulation and partly rescued the damaged cellular lipid homeostasis, thus identifying a role for AICD in LRP1 transcription control. Point mutations in AICD further support this interpretation.

It is tempting to speculate that Aβ40 (as downregulator of the cholesterol synthesis enzyme HMGR) together with AICD (as a regulator of cholesterol uptake via LRP1) might be able to rescue cellular cholesterol levels fully. However, lipid homeostasis is a fairly complex game, and more players might be involved. Interestingly, Bu and colleagues report that PS1, but not PS2, is involved in LRP1 regulation. For sphingomyelin metabolism (a function of Aβ42), this is different. Here PS2 is able to functionally...  Read more

  Submit a Comment on this Paper
Cast your vote and/or make a comment on this paper. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend this paper

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
 
 

REAGENTS/MATERIAL:
Antibodies used in this study are:
two in-house antibodies (against 515 kDa subunit and 85 kDa subunit, respectively) to LRP1, and an in-house antibody to LDLR; mouse monoclonal anti-NeuN (A60) (Chemicon); goat anti-APP C-terminal (Biosource Invitrogen); anti-actin (Sigma); anti-Fe65 (Abcam); rabbit anti-Tip60 (Calbiochem); for ELISA, mouse monoclonal anti-ApoE (WU E4) (Krul et al); goat anti-ApoE (Calbiochem)

Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad