Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: Papers of the Week
Annotation


Cheng IH, Scearce-Levie K, Legleiter J, Palop JJ, Gerstein H, Bien-Ly N, Puoliväli J, Lesné S, Ashe KH, Muchowski PJ, Mucke L. Accelerating amyloid-beta fibrillization reduces oligomer levels and functional deficits in Alzheimer disease mouse models. J Biol Chem. 2007 Aug 17;282(33):23818-28. PubMed Abstract, View on AlzSWAN

  
Comments on Paper and Primary News
  Primary News: Enhancing Aβ Fibrillization Boosts Mouse Memory

Comment by:  Charles Glabe, ARF Advisor
Submitted 17 August 2007  |  Permalink Posted 17 August 2007

Alzheimer scientists have long known that amyloid plaques are not always associated with cognitive dysfunction. Indeed, some cognitively normal individuals have impressive numbers of insoluble amyloid plaques. Recent studies have shifted the focus to soluble amyloid oligomers as a primary pathological effector of AD. These observations suggest the possibility that shifting the aggregation state of Aβ from soluble oligomers to insoluble fibrils may actually be beneficial and decrease cognitive dysfunction. This hypothesis has been tested in a recent paper by Lennart Mucke and coworkers in the recent issue of the Journal of Biological Chemistry. These studies used expression of mutant forms of Aβ in transgenic mice as a means of manipulating the aggregation state of Aβ. The authors report that the Arctic mutation actually increases the rate of fibril formation, in contrast to earlier reports that indicated that the mutation enhances oligomerization rather than fibril formation. Expression of the “Arctic” (E22G) mutant leads to accelerated amyloid fibril deposition in plaques and...  Read more

  Primary News: Enhancing Aβ Fibrillization Boosts Mouse Memory

Comment by:  Koichi Iijima, Kanae Iijima-Ando
Submitted 20 August 2007  |  Permalink Posted 20 August 2007

Cheng et.al. (1) reported interesting results showing that acceleration of amyloid plaque formation by introducing the “Arctic” mutation, which causes familial Alzheimer disease (FAD), within the Aβ sequence rescues memory deficits in their transgenic mice expressing human amyloid precursor proteins. This rescue effect is correlated with the reduction in the level of Aβ*56, which was previously shown to impair memory in rodent models of AD (2). Although this conclusion is well consistent with recent reports suggesting soluble Aβ oligomers but not amyloid fibrils are causative agents for memory defects, their results also raise an intriguing question: Why does the Arctic mutation cause FAD, if Aβ-Arctic is less toxic than wild-type Aβ (Aβ-Wt)?

As the authors mention, one explanation would be due to a lack of Aβ-Wt in their ARC mice. Authors discuss the possibility that Aβ-Wt affects the aggregation kinetics of Aβ-Arctic, resulting in the production of more toxic intermediate forms. Another possibility could be that, although Aβ-Arctic itself is prone to fibrilize and produce...  Read more


  Comment by:  Rudy Castellani, Hyoung-gon Lee, George Perry, ARF Advisor (Disclosure), Mark A. Smith (Disclosure), Xiongwei Zhu
Submitted 28 August 2007  |  Permalink Posted 28 August 2007

Amyloid Spin Doctors
It certainly would seem that the Alzheimer disease (AD) research community has completed the 180-degree turnaround on their view of the toxic amyloid-β entity, i.e., from fibrils to oligomers. The days of plaque busters are presumably gone and the once toxic fibrils are now viewed as friend, not foe. While our group is probably the last that will go on record as defending amyloid-β in any guise (Perry et al., 2000; Joseph et al., 2001; Rottkamp et al., 2002; Smith et al., 2002a, b; Smith et al., 2002c; Lee et al., 2004a; Lee et al., 2004b; Lee et al., 2005; Lee et al., 2006b, 2006a; Lee et al., 2007), this about face reveals much about the scientific method and those that rigidly ignore its principles. Simply, the old analogue methods of in vitro amyloid toxicity are being replaced by the new digital methods of behavior in transgenic animals. In the past, using cell culture paradigms, fibrillar was the enemy and soluble the friend. Nowadays, using transgenic models, the reverse is true. However, the big question that often gets overlooked is what...  Read more

  Primary News: Enhancing Aβ Fibrillization Boosts Mouse Memory

Comment by:  Lennart Mucke (Disclosure)
Submitted 30 August 2007  |  Permalink Posted 30 August 2007

I appreciate Drs. Iijima and Iijima-Ando’s comments on our paper and would like to address a couple of points they raised.

1. “Why does the Arctic mutation cause FAD, if Aβ-Arctic is less toxic than wild-type Aβ (Aβ-Wt)?” Our study demonstrates that high levels of oligomers containing either Aβ-Arctic (line ARC48) or Aβ-Wt (line J20) are associated with AD-like behavioral and neuronal impairments. Thus, Aβ-Arctic and Aβ-Wt would be expected to have comparable toxicities under conditions that promote the accumulation of pathogenic oligomers. Additional factors were discussed in our paper as kindly acknowledged by the commentators.

2. “It would be interesting to examine whether intracellular Aβ deposits are observed in the Cheng et al. mice models.” Although we have yet to use immuno-electron microscopy to address this issue, we have used a variety of standard immunohistochemical approaches to look for intracellular Aβ in our models. Using antibodies that detect Aβ, but not longer C-terminal APP fragments, we have found no intraneuronal accumulation of Aβ-specific...  Read more


  Comment by:  Brigita Urbanc, ARF Advisor
Submitted 8 September 2007  |  Permalink Posted 8 September 2007

Searching for the Culprit
Numerous scientific studies provide evidence that amyloid- β protein (Aβ) plays a prominent role at the early stages of Alzheimer disease (AD). The pathway and mechanisms by which Aβ mediates toxicity are less clear. Despite substantial evidence that early oligomeric aggregates are key toxic species, many therapeutic strategies are still targeted against fibrillar aggregates. This thorough and elegant study by Cheng et al. conducted by Lennart Mucke’s group shows that such strategies need to be seriously re-evaluated.

Using three transgenic mouse lines which express different relative amounts of oligomers versus fibrils, Cheng et al. demonstrated that the amount of soluble oligomers but not insoluble fibrils deposited in amyloid plaques correlated with learning and memory impairments of these animals. As a tool to vary the amounts of oligomers and amyloid burden in the three transgenic lines, the Arctic mutation (E22G), which in humans leads to familial AD (FAD) and in vitro enhances protofibril and fibril formation,...  Read more

  Submit a Comment on this Paper
Cast your vote and/or make a comment on this paper. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend this paper

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
 
 
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad