Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: Papers of the Week
Annotation


Tampellini D, Magrané J, Takahashi RH, Li F, Lin MT, Almeida CG, Gouras GK. Internalized antibodies to the Abeta domain of APP reduce neuronal Abeta and protect against synaptic alterations. J Biol Chem. 2007 Jun 29;282(26):18895-906. PubMed Abstract

Comments on Paper and Primary News
  Comment by:  Michal Arbel-Ornath
Submitted 22 May 2007  |  Permalink Posted 22 May 2007

This paper offers an interesting novel mechanism by which anti-Aβ antibodies mediate intraneuronal Aβ reduction. Accumulating data support the role of intraneuronal Aβ in the early stages of AD. Indeed, intracerebral injection of anti-Aβ antibody to the triple-transgenic AD mice model reduced intraneuronal Aβ, and this correlated with improvement in cognitive function (1). Many mechanisms were suggested to account for extracellular Aβ reduction; however, the mechanism by which the antibodies affect intracellular Aβ is not clear.

To address this issue, Tampellini and colleagues performed an extensive work employing both a neuronal cell line and primary neurons of the Tg2576 AD transgenic model. In their work, the authors show that anti-Aβ antibodies administered in the cells' growing media are internalized into the cells by binding to the Aβ sequence of the full-length APP, and that the antibodies accelerate Aβ degradation through the endosomal-lysosomal pathway. Importantly, Aβ carboxy terminal-specific antibodies that preclude APP binding fail to enter the cells and affect...  Read more


  Comment by:  Salvatore Oddo
Submitted 23 May 2007  |  Permalink Posted 23 May 2007

In this manuscript, Gouras and colleagues showed that anti-Aβ antibodies generated against the extracellular domain of Aβ were able to reduce intracellular Aβ accumulation in a neuronal cell line and primary neurons. In contrast, they showed that treatment with the G2-11 antibody, which is raised against the intramembranous region of Aβ, did not reduce intraneuronal Aβ accumulation. This is consistent with our previous work, where we showed that both active and passive Aβ immunization was able to clear intraneuronal Aβ deposits in vivo (Oddo et al., 2004; Billings et al., 2005; Oddo et al., 2006).

To determine the mechanism of intraneuronal Aβ clearance, Gouras and colleagues nicely showed that, in their experimental setup, the antibodies 6E10 and 4G8 are internalized by endocytosis and this internalization process is required for intraneuronal Aβ clearance. We have shown that in the 3xTg-AD mice, after a single intrahippocampal injection...  Read more


  Comment by:  Steve Barger (Disclosure)
Submitted 25 May 2007  |  Permalink Posted 26 May 2007

Riddle me this, Batman: If you took a cell lysate and incubated it with antibody to a particular cellular protein, would it then be possible to detect that protein in an ELISA? Or would the (first) antibody mask the protein? And... isn't that possibly what Tampellini et al. have done? Granted, this would still require internalization of the antibody - something that has been well-documented in other systems. And, it would probably still indicate a helpful effect, as the antibody would probably inhibit aggregation. But, it would mean that the title of the paper is technically wrong. In other words, I did not see direct, quantitative evidence that A-beta was "reduced." I say this not to be a naysayer - just to point out a technical difficulty.

View all comments by Steve Barger

  Comment by:  Gunnar K. Gouras, Michael Lin
Submitted 6 June 2007  |  Permalink Posted 6 June 2007

Reply by Davide Tampellini, Michael Lin, Gunnar Gouras
Regarding the technical question by Dr. Barger, we used two other methods besides ELISA. In the Western blot in Figure 1B, neurons were treated with Aβ antibody, washed, lysed in 6 percent SDS, and direct-loaded onto the gel, run under denaturing conditions. There was no antibody-based capture process that would be confounded by previous antibody treatment. Moreover, the denaturing conditions, which we also use for immunoprecipitation experiments, separate antibody-antigen complexes. Thus, the decreased Aβ band intensities in antibody treated cells are not due to obscuration by the antibody treatment. Additionally, using immunofluorescence (Figure 2E), the Aβ42-specific detecting antibody recognizes an entirely different epitope from the treating antibody.

View all comments by Gunnar K. Gouras
View all comments by Michael Lin

  Comment by:  Milan Fiala (Disclosure)
Submitted 2 September 2008  |  Permalink Posted 5 September 2008

We are investigating clearance of intraneuronal amyloid-β in Alzheimer brain sections using incubation (two or four days) with monocytes of control or Alzheimer subjects. Control monocytes intrude into neurons by their processes and upload oligomeric amyloid-β; Alzheimer patients' monocytes upload less and suffer apoptosis; apoptotic monocytes spill amyloid-β which becomes fibrillar and leads to congophilic angiopathy.

We agree with the comments by Alex Roher that vascular amyloidosis is a critical problem and is not easily solved by vaccination, which does not increase degradation. The issue is that amyloid-β needs to be degraded inside the brain, the modes of transport out of the brain are restricted. Macrophages of control subjects are much more effective in degrading amyloid-β in vitro compared to macrophages of Alzheimer patients.

References:
Fiala M, Philip Liu, Araceli Espinosa-Jeffrey et al. Innate immunity and transcription of MGAT-III and Toll-like receptors in Alzheimer's disease patients are improved by bisdemethoxycurcumin. Proc Natl Acad Sci USA. 2007;104:12849-12854. Abstract

View all comments by Milan Fiala

  Submit a Comment on this Paper
Cast your vote and/or make a comment on this paper. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend this paper

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
 
 

REAGENTS/MATERIAL:
Antibodies used in this study are:
mouse monoclonal anti-Aβ, residues 5-10 (6E10) (Signet Covance); mouse monoclonal anti-Aβ, residues 17-24 (4G8) (Signet Covance); mouse monoclonal anti-Aβ42, C-terminus (G2-11) (Genetics Company); anti-Aβ40, C-terminus (Chemicon); anti-Aβ42, C-terminus (Chemicon); mouse monoclonal anti-APP, N-terminus (22C11) (Roche Applied Science, now Chemicon); rabbit anti-Synapsin I (Chemicon); rabbit APP 369anti-APP, C-terminus; mouse monoclonal anti-PSD-95 (6G6-1C9) (Chemicon) mouse monoclonal anti-APP, N-terminus (P2-1) (Affinity BioReagents) mouse monoclonal anti-EEA1 (14) (BD Transduction) mouse monoclonal anti-Tsg101 (4A10) (Genetex) rabbit anti-APP, residues 1-10 (LabVision Neomarkers); rabbit anti-Lamp2 (Zymed); and Aβ1-40 and Aβ1-42 were measured by using the respective ELISA kits (Biosource)

Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad