Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: Papers of the Week
Annotation


Guo JP, Arai T, Miklossy J, McGeer PL. Abeta and tau form soluble complexes that may promote self aggregation of both into the insoluble forms observed in Alzheimer's disease. Proc Natl Acad Sci U S A. 2006 Feb 7;103(6):1953-8. PubMed Abstract

  
Comments on Paper and Primary News
  Primary News: Dangerous Liaisons—Tau and Aβ, Together at Last?

Comment by:  Gerd Multhaup
Submitted 27 January 2006  |  Permalink Posted 27 January 2006

Guo et al. have found that tau and amyloid-β can interact in vitro. The authors used a mix of full-length recombinant tau and synthetic Aβ40 or Aβ42 to show that SDS-stable complexes are formed between tau and Aβ peptides after 5 hours' incubation time. Phosphorylation of tau by GSK3β weakened the interaction. A synthetic peptide spot array revealed three presumed binding sites for recombinant tau within the Aβ sequence, Aβ11-16, Aβ27-32 and Aβ37-42. The N-terminal site has a histidine residue at position 13 that is not conserved in rodents. The other two candidate sites are localized to the C-terminal region of Aβ, which adopts a β-sheet conformation before or during the aggregation of Aβ into amyloid.

Surprisingly, immunostaining of tau and Aβ revealed a colocalization of tau and Aβ with varying degrees. I would expect Aβ to be associated with vesicular compartments and tau being associated with the cytoskeleton. So far, we do not know if the staining exclusively reflects Aβ staining, since the antibody 4G8’s epitope is also found in β-stubs. Also, a release of soluble...  Read more


  Primary News: Dangerous Liaisons—Tau and Aβ, Together at Last?

Comment by:  Massimo Tabaton
Submitted 27 January 2006  |  Permalink Posted 27 January 2006

Patrick McGeer and colleagues showed that the Aβ species form SDS-resistant complexes with tau protein in vitro, and the binding promotes tau phosphorylation. Hence, they suggest, the intraneuronal interaction between Aβ and tau is crucial for the formation of neurofibrillary tangles.

This conclusion would be more strongly supported by the demonstration of Aβ/tau complexes with immunoblotting in soluble fractions of AD brain. In addition, the immunocytochemistry is not convincing. We showed with immunoEM that Aβ and tau are associated only in the "ghost," extracellular tangles (Tabaton et al., 1991). In this case, the association reflects a "nucleation effect" of the core of PHF-tau on the soluble Aβ. Therefore, the association does not have a functional role in PHF formation. In the present paper, the authors do not convince that Aβ and tau coreactivity occurs intracellularly.

View all comments by Massimo Tabaton


  Primary News: Dangerous Liaisons—Tau and Aβ, Together at Last?

Comment by:  Jurgen Goetz, ARF Advisor
Submitted 27 January 2006  |  Permalink Posted 27 January 2006

The identification in this paper of a complex formation between Aβ and tau by Patrick McGeer’s group (Aβ and tau form soluble complexes that may promote self-aggregation of both into the insoluble forms observed in Alzheimer disease) by Western blotting, surface plasmon resonance, and ELISA, is a fascinating piece of work. I like in particular the data obtained with the peptide array of 214 peptide spots covering the entire tau sequence and with 11 specific peptides, with or without phosphorylated serine and threonine. Not surprisingly, phosphorylation of the “physiological” AT8 epitope S202/T205 of tau does not interfere with Aβ binding, whereas phosphorylation of the “pathological” epitopes T212/S214 (AT100) and S422, among others, does.

In light of the co-occurrence of Aβ plaques and Lewy bodies in a range of dementing disorders, it would be very interesting to determine in a follow-up study the interaction of α-synuclein and Aβ. If affinities there are much lower than for tau/Aβ, it may also partly explain why plaques and NFTs co-occur more often than plaques and Lewy...  Read more


  Primary News: Dangerous Liaisons—Tau and Aβ, Together at Last?

Comment by:  John Trojanowski, ARF Advisor
Submitted 27 January 2006  |  Permalink Posted 27 January 2006

Guo et al. address a longstanding enigma about the signature lesions of AD, that is, the senile plaques (SPs) formed by extracellular deposits of Aβ amyloid fibrils and the neurofibrillary tangles (NFTs) formed by intraneuronal accumulations of tau amyloid fibrils known as PHFs or PHFtau.

Despite an abundance of hypotheses to account for how Aβ fibrils may cause formation of PHFtau and NFTs, or how PHFtau might induce formation of Aβ-rich SPs, there is little experimental data to support the predictions of these hypotheses. Circumstantial evidence from studies of sporadic and familial AD has been interpreted to imply that Aβ amyloid causes tau amyloidosis and NFTs in AD, and yet studies of Guam tauopathies and Niemann Pick Type C disease (NPC) lend support to the notion that the accumulation of SPs results from the earlier accumulation of NFTs in these diseases. However, there is little experimental evidence to support inferences based on these and other types of circumstantial evidence.

Indeed, most transgenic mice engineered to overexpress human Aβ develop SPs but not...  Read more


  Primary News: Dangerous Liaisons—Tau and Aβ, Together at Last?

Comment by:  Nikolaos K. Robakis
Submitted 31 January 2006  |  Permalink Posted 31 January 2006

The concept of this study could be important, as it may offer an explanation for tau overphosphorylation in AD. On the other hand, it is not clear how this theory explains the independent distribution of the amyloid plaques and neurofibrillary tangles (NFTs) in the AD (or even normal) brain, or the fact that NFTs can form in the absence of Aβ deposition. Also, since soluble Aβ is found in all people and all brains (and thus far solid evidence for a specific increase in any form of a soluble Aβ in sporadic AD is lacking), what keeps soluble Aβ from catalyzing tau overphosphorylation in normal brains?

View all comments by Nikolaos K. Robakis

  Primary News: Dangerous Liaisons—Tau and Aβ, Together at Last?

Comment by:  P.L. McGeer
Submitted 6 February 2006  |  Permalink Posted 6 February 2006

Reply by Pat McGeer to commentary above
John Trojanowski, Juergen Goetz, Gerd Multhaup, Massimo Tabaton, and Nikolaos Robakis have each made thoughtful and pertinent comments about our paper.

Our demonstration of a strong interaction between Aβ and tau is such a simple and easily replicable experiment that it may seem strange that it was not identified long ago. We suggest the reason is the widespread acceptance of the standard APP-Aβ model. It hypothesizes that Aβ is produced at the cell surface and then secreted into the extracellular fluid. Even the names given to the enzymes responsible for Aβ production reinforce this concept: α-secretase, β-secretase, and γ-secretase.

But intraneuronal production of Aβ also occurs. There is a rich but overlooked literature on this subject. We hope our paper will draw attention to that literature, as well as stimulate productive new experiments involving intraneuronal Aβ. We did not cover papers involving transgenic mice, but a report of particular interest is that of Billings...  Read more


  Comment by:  Hyoung-gon Lee, George Perry, ARF Advisor (Disclosure), Mark A. Smith (Disclosure), Xiongwei Zhu
Submitted 15 February 2006  |  Permalink Posted 15 February 2006

Tau-Amyloid Interactions: A Timely Revival?
The long-awaited direct connection between amyloid-β and tau may have finally arrived with the publication of this paper. The question is, given the experimental simplicity, why did it take so long? The simple answer is that it did not. Certainly, it was well established by three groups (Smith et al., 1995; Giaccone et al., 1996; Islam and Levy, 1997) that amyloid-β precursor protein (AβPP) is able to interact with tau and that this promoted fibril formation. Earlier still, it was established that amyloid-β (and, in fact, the entire AβPP protein) was associated with intraneuronal (Hyman et al., 1989; Allsop et al., 1990; Perry et al., 1992; Perry et al., 1993) and extracellular neurofibrillary tangles (Smith et al., 1990; Tabaton et al., 1991), leading one of us to the “outrageous” (at the time) conclusion that neurofibrillary tangles were the nucleation point for senile plaques (Perry, 1993).

The difference? Earlier reports were perhaps not published in such a high-profile journal, perhaps not so elegantly direct and,...  Read more

Comments on Related News
  Related News: SfN: Amyloid Oligomers—Not So Elusive, After All? Part 2

Comment by:  Charles Glabe, ARF Advisor
Submitted 6 December 2005  |  Permalink Posted 6 December 2005

Aβ oligomers have been around for as long as Aβ (Masters et al., 1985). Their significance and their relationship with fibrils has been a longstanding question that is only now becoming clearer as techniques improve. The first conformation-dependent antibodies that we made (Yang, 1995) recognized soluble oligomeric species but not monomer or APP, and these antibodies stain plaques intensely, suggesting that they are conformationally related to fibrils. Our later antibody, A11, showed that there are also oligomers that have a conformation that is distinct from fibrils. On our poster, 422.20, we compared the fibril-specific and oligomer-specific antibodies and showed that they recognize separate and distinct species, and yet on Western blots these soluble oligomers run at the same size (~50 K–200 K). This indicates that there are two distinct types of soluble oligomers and that size is a poor indicator of whether something is fibrillar or prefibrillar.

Recent research is beginning to...  Read more

  Submit a Comment on this Paper
Cast your vote and/or make a comment on this paper. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend this paper

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
 
 

REAGENTS/MATERIAL:

Antibodies used in this study were: monoclonal T46 anti-tau (Zymed); rabbit polyclonal anti-tau A0024 (DAKO), goat polyclonal anti-tau AB 5868 (Chemicon), and monoclonal HT7 anti-tau (Innogenetics). Tau 12 and tau C3 were generous gifts from L. I. Binder (Northwestern University, Chicago). All are independent of tau phosphorylation. PHF-1, an anti-phosphorylated tau monoclonal antibody was a kind gift from Peter Davies (Albert Einstein College of Medicine, New York). Anti-tau [pT231] was purchased from BioSource (Camarillo, CA).

The 4G8 monoclonal antibody to Ab which recognizes Ab17-24, and therefore detects Ab40, Ab42, and N-terminal truncated forms of Ab, was obtained from Sigma. The polyclonal antibodies tAb40, which recognizes the C-terminus of Ab40, and tAb42, which recognizes the C-terminus of Ab42, were generous gifts of H. Mori (Tokyo Institute of Psychiatry, Tokyo). A rabbit polyclonal antibody that recognizes Ab1-23, R17, was a generous gift of T. Ishii (Tokyo Institute of Psychiatry, Tokyo).

Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad