Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: Papers of the Week
Annotation


Marchesi VT. An alternative interpretation of the amyloid Abeta hypothesis with regard to the pathogenesis of Alzheimer's disease. Proc Natl Acad Sci U S A. 2005 Jun 28;102(26):9093-8. PubMed Abstract, View on AlzSWAN

Comments on Paper and Primary News
  Comment by:  Tommaso Russo, ARF Advisor
Submitted 27 June 2005  |  Permalink Posted 27 June 2005
  I recommend this paper

  Comment by:  Anne Fagan, ARF Advisor
Submitted 30 June 2005  |  Permalink Posted 30 June 2005
  I recommend this paper

  Comment by:  Eddie Koo, ARF Advisor
Submitted 20 September 2005  |  Permalink Posted 20 September 2005

As is often the case, an outsider can give fresh perspectives in ways that someone from the inside has difficulty seeing. In this article, Dr. Vincent Marchesi, a former member of the Alzheimer Research Forum Advisory Board, presented a very thoughtful perspective and hypothesis concerning Aβ-mediated toxicity in brain. The premise with which Dr. Marchesi approached this article is that while the evidence linking Aβ peptide to "the pathogenesis of AD is substantial," how these peptides may be toxic in brain is far from resolved. While current investigators favor the model that neurons process APP and release the cleaved Aβ peptides into the extracellular space where they can form cytotoxic oligomers and aggregate into amyloid deposits, this scenario is indeed far from proven. For example, the Golde laboratory recently showed quite definitively that Aβ42 is necessary for parenchymal amyloid deposits when they creatively fused the Aβ domain to the Bri gene and expressed this construct in mice (1). However, these animals, in spite of substantial amyloid load in brain, have a normal...  Read more

  Comment by:  Tommaso Russo, ARF Advisor
Submitted 22 September 2005  |  Permalink Posted 22 September 2005

It is quite surprising that, despite a huge number of experiments done and papers published, the molecular events responsible for the Alzheimer's phenotype remain obscure. This article is a stimulating exercise that gives support to an alternative explanation for the possible toxic effects of Aβ peptides. In a nutshell, Dr. Marchesi proposes that Aβ peptides exert their toxicity within the cell membranes, where they remain entrapped as dimers after the cleavage of APP. Therefore, extracellular oligomers or larger aggregates could have no toxic effects: Plaques could be even a "safe" storage of toxic peptides, which prevent their reassociation with the membranes.

I'll add three further points to the interesting speculation of Marchesi. First, we should consider that Aβ42 has two extra residues (Ile and Ala) at its C-terminus. These could render more stable, compared to Aβ40, the association of the peptide itself with the hydrophobic environment of the membrane bilayer. This could explain why Aβ42 seems to be so crucial for AD pathogenesis.

A second point is that the...  Read more


  Comment by:  Dennis Selkoe, ARF Advisor (Disclosure)
Submitted 28 September 2005  |  Permalink Posted 28 September 2005

In his PNAS Perspective, Vincent Marchesi, in characteristic fashion, provides us with substantial food for thought. Dr. Marchesi presents a cogently argued hypothesis that provides an alternative—or perhaps an addition—to the concept that Aβ oligomers and/or amyloid fibrils injure neurons from without. Based on reported evidence that APP and Aβ can each occur as dimers in cholesterol-rich "lipid raft" domains of neuronal membranes, Dr. Marchesi proposes that APP dimers may be processed as such by the β- and γ-secretase s to yield Aβ dimers which, at least in part, remain in the membrane bilayer. He then suggests specific ways in which intramembranous dimers of Aβ could compromise the function of numerous other transmembrane proteins that share with Aβ the hydrophobic GxxxG motif, including the very proteins that help generate Aβ in the first place (presenilin and Aph-1). If membrane-retained rather than secreted Aβ is principally responsible for compromising neuronal function, Dr. Marchesi notes, perhaps experimental treatments designed to lower extracellular Aβ may miss their...  Read more

  Comment by:  Thomas Bayer
Submitted 28 September 2005  |  Permalink Posted 28 September 2005

The very interesting review of Dr. Vincent Marchesi deals with the notion that Aβ, once generated by diverse secretases, never leaves the membrane and exerts its toxicity by yet unknown mechanisms. Supporting this view, we and others have seen evidence that intraneuronal accumulation of Aβ42 is the main trigger for the pathological events leading to neuron loss and brain atrophy. Increased Aβ42 has been observed in postmortem brains of patients with beginning Alzheimer disease and Down syndrome, and several APP transgenic mouse models.

Increasing intraneuronal Aβ42 leads to an age-dependent neuron loss in hippocampus in two different APP/PS1 transgenic mouse models with no correlation to plaque load, that is, extracellular Aβ. Intraneuronal Aβ42 is primarily found in multivesicular bodies in these mice. Intraneuronal Aβ42 accumulation in the somatodendritic compartment may have an influence on axonal trafficking and integrity, an issue which is currently also debated. However, whether Aβ42 is closely associated with intracellular membranes or plasma membrane in these mice is...  Read more


  Comment by:  Vincent Marchesi, ARF Advisor
Submitted 6 October 2005  |  Permalink Posted 6 October 2005

Response by Vincent Marchesi to comments through 28 September 2005

Dr. Russo points out that if Aβ peptides or fragments of them remain within the lipid bilayer after their generation, Aβ42, with two additional hydrophobic residues, should be more stable within the bilayer than Aβ40, a factor that could account for its greater toxicity. He also raises the interesting possibility that the P-3 peptide, widely assumed to be nontoxic, whose sequence appears below, might be even more likely to partition within the bilayer, since it has the same hydrophobic core but lacks many of the polar residues of either Aβ fragment. If the β-secretase pathway is favored, as many suspect, there would be much less P-3 than either of the Aβs, but P-3 might be doing more than we realize. For one thing, its primary sequence exactly matches the homologous segments of the Aβs, as shown below, and it should, in principle, dimerize with either monomer. If the P-3 peptide is less toxic, for whatever reasons, could it function to neutralize the Aβs, acting as some kind of intramembranous...  Read more


  Comment by:  Gunnar K. Gouras, ARF Advisor
Submitted 7 October 2005  |  Permalink Posted 7 October 2005

Dr. Marchesi provides refreshing insights into how accumulating membrane-associated Aβ may be involved in AD pathogenesis. For example, it is intriguing to consider that Aβ, which we thought accumulates in the inner aspect of outer limiting membranes of endosomes, may actually be embedded within the membrane bilayer. This could also illuminate why Aβ42 prefers to be retained in cells upon exocytosis of more soluble Aβ40 peptides.

Marchesi's Perspective article highlights the importance of investigating the biology of Aβ42 accumulating within neurons. What's the evidence for a detrimental role of intraneuronal Aβ, also in human AD? In short, by immuno-EM, accumulating intraneuronal Aβ42 and especially Aβ oligomers are associated with subcellular destruction, which equals neuronal dysfunction. This occurs in the absence of plaques. There is so much that needs to be uncovered, including how extracellular Aβ influences intracellular Aβ, the biology of APP/Aβ, PS1 and other AD-linked proteins, especially within synaptic membrane compartments, and the molecular mechanism by which...  Read more


  Comment by:  Ilse Dewachter, Fred Van Leuven (Disclosure)
Submitted 7 October 2005  |  Permalink Posted 7 October 2005

The 12 Faces of Amyloid
The problem of the amyloid peptides always reminds us of an object in the Gallo-Roman museum in Tongeren, the oldest city of Belgium, located about 30 miles east of Leuven. The pentagonal dodecaeder is made of bronze (the museum shop sells tin replicas for 35 euros), and 90 such artifacts were found north of the Alps, in places ranging from England to the Balkan. They occurred in diverse archeological sites, i.e., military camps, public baths, city houses, theaters, graves, and even buried with a treasure of coins.

Nobody has the slightest idea what they are for, or what purpose they serve, either as a tool, jewel, symbol, toy, relic, instrument. The hypotheses and guesses are as diverse as they are wild. The parallel with the amyloid peptides is evident, although it's not perfect since the 90 known dodecaeders are all very similar and their 12 faces are identical—as opposed to the amyloid peptides that differ considerably depending on who is looking and through what tool!...  Read more


  Comment by:  David Holtzman, ARF Advisor
Submitted 10 October 2005  |  Permalink Posted 10 October 2005

Vincent Marchesi puts forward a potential alternative mechanism as to how the amyloid-β (Aβ) peptide may be involved in the pathogenesis of Alzheimer disease (AD). Dr. Marchesi proposes the possibility that Aβ peptides might be exerting their toxic effects by never leaving the membrane lipid bilayer after they are generated, and that in the membrane, they might exert their toxic effects by competing with and compromising the functions of intramembranous segments of membrane-bound proteins that serve many critical functions.

This is an interesting hypothesis. Not being the first person to comment on the hypothesis, I note the thoughtful comments of the other scientists who have done so already. I try to add below some observations not noted by the other commentators. Dr. Marchesi first describes a series of observations described in the literature. While I think several of these observations are correct, I think there are a few points worth noting that I am not convinced occur in AD. For example, in the triple transgenic mouse strain produced by the LaFerla lab, some...  Read more


  Comment by:  Iwo Bohr
Submitted 11 October 2005  |  Permalink Posted 11 October 2005

I am very glad to see hypotheses launching new ideas on the pathogenesis of AD. My content is even greater that this interesting hypothesis includes the role of cellular membranes in this process, which I find crucial, as well.

Having said that, I also share many of Dr. Selkoe's reservations towards Dr. Marchesi's concept. I wouldn't rule out the possibility that some fraction of Aβ may remain in the cellular membrane, followed by processes of dimerization and ensuing contributions to toxicity. Nevertheless, the fact is that low soluble products of APP cleavage accumulate mainly in the extracellular space. The long-lasting process of such accumulation may finally lead to formation of senile plaques. If presumed intramembrane Aβ accumulation had a big neurotoxic effect, one can expect that it would result in neuronal death before neurons would be able to produce great amounts of extracellular deposits, that is, unless intramembrane accumulation intensifies in later stages of pathological Aβ overproduction and/or low clearance. I can even give "a prompt" to Dr. Marchesi that it...  Read more


  Comment by:  Steve Barger (Disclosure)
Submitted 12 October 2005  |  Permalink Posted 12 October 2005

In speculation about the potential roles of Aβ in neural health and disease, it is surprising how rarely discussants invoke the topic of physiologically appropriate synaptic remodeling.

The best working model that we have for the initiation of memory is long-term potentiation (LTP). However, this largely biochemical sequence of events does not explain memory to a level of complete satisfaction; the gap is made up, partially, by the conversion of the biochemical events of LTP into longer-term structural changes in the synapse. An equally important contribution to the development and consolidation of memory is likely to be made by long-term depression (LTD). And, if there is a structural component to synaptic potentiation, then synaptic or dendritic pruning is most certainly a structural analog in the biochemical depression of a synapse.

A physiological role for Aβ in these normal, depressive aspects of synaptic plasticity has been posited by others (1). In this model, the development of Alzheimer disease reflects a runaway tipping of the synaptic balance...  Read more


  Comment by:  Vincent Marchesi, ARF Advisor
Submitted 14 September 2005  |  Permalink Posted 14 October 2005

Dr. Holtzman is correct to point out that my views on the possible fate of cleaved Aβ peptides were heavily influenced by the finding of Kawarabayashi and coworkers, who showed that significant amounts of the Aβ42 peptides were found associated with lipid rafts isolated from both Tg animals and the brains of AD patients. He also notes, very appropriately, that because lipid raft fragments of membranes can at present only be isolated in the presence of nonionic detergents, the possibility exists that homogenizing cells or brain tissue that contain large amounts of extracellular Aβ in the presence of detergent could conceivably cause Aβ dimers to be entrapped in the rafts during homogenization as opposed to their having been generated there in situ. While I think this is unlikely, I agree that this important caveat has to be ruled out.

Dr. Barger reminds us that AD is much more than a complicated ensemble of proteolytic fragments that accumulate in damaged brain tissue. I like his suggestion, which I'm sure is shared by many, that a deeper analysis is needed of the role that Aβ...  Read more


  Comment by:  Robert Vassar, ARF Advisor
Submitted 19 October 2005  |  Permalink Posted 19 October 2005

Research spanning the last two decades has increasingly implicated the Aβ peptide as a critical early player in the pathogenesis of AD. However, the mechanisms of Aβ-mediated toxicity and neurodegeneration in AD have been intensely debated and remain poorly understood. One of the most controversial issues concerning Aβ toxicity has regarded the form of Aβ that ultimately is responsible for the neuronal degeneration and death that are observed in AD brain. Compelling evidence suggests that the 42-amino-acid species, Aβ42, the overproduction of which strongly associates with familial AD, is the toxic agent in AD. However, beyond this, much mystery remains regarding the mechanism of Aβ42 toxicity. Paramount in this controversy over Aβ42 toxicity is the peptide's exact conformation, assembly state, and spatial localization in relation to the neuron. Multiple forms of Aβ, including fibrillar plaque-associated Aβ, small soluble Aβ oligomers, and intraneuronal Aβ accumulations, among others, have all been proposed to be neurotoxic in AD, and compelling evidence for each has been...  Read more

  Comment by:  George M. Martin, ARF Advisor (Disclosure)
Submitted 25 October 2005  |  Permalink Posted 25 October 2005

I am "Johnny Come Lately" to this lively discussion. Most of the major points have already been made. Our lab has favored a major role for intracellular events as a basis for β amyloid toxicity since the early 1990s (Fukuchi et al., 1992; 1993). I hasten to add, however, that functional and structural damage from within and from without are not mutually exclusive.

Having known Vin Marchesi for many years, I have learned to pay very careful attention to his thoughtful papers. As a fellow pathologist, I am wondering how seriously he takes the more general proposition that additional forms of amyloidosis might be classified as "channelopathies" (BL Kagan et al., 2002; ARF Live Discussion ).

References:
Fukuchi K, Kamino K, Deeb SS, Smith AC, Dang T, Martin GM. Overexpression of amyloid precursor protein alters its normal processing and is associated with neurotoxicity. Biochem Biophys Res Commun. 1992 Jan 15;182(1):165-73. Abstract

Fukuchi K, Kamino K, Deeb SS, Furlong CE, Sundstrom JA, Smith AC, Martin GM. Expression of a carboxy-terminal region of the beta-amyloid precursor protein in a heterogeneous culture of neuroblastoma cells: evidence for altered processing and selective neurotoxicity. Brain Res Mol Brain Res. 1992 Nov;16(1-2):37-46. Abstract

Fukuchi K, Sopher B, Martin GM. Neurotoxicity of beta-amyloid. Nature. 1993 Jan 14;361(6408):122-3. Abstract

Kagan BL, Hirakura Y, Azimov R, Azimova R, Lin MC. The channel hypothesis of Alzheimer's disease: current status. Peptides. 2002 Jul;23(7):1311-5. Abstract

View all comments by George M. Martin


  Comment by:  Roberto Malinow
Submitted 26 October 2005  |  Permalink Posted 26 October 2005

I've read this informative forum with interest. I believe our work may have some relevance to the question: Is secreted Aβ a pathogenic agent in Alzheimer disease?

We have reported that transient viral overexpression of APP depresses excitatory synaptic transmission (1), and now we have unpublished evidence that this also causes dendritic spine loss. This effect is seen by overexpression of C99, but not by APP-MV, a point mutant APP that is not efficiently cleaved by β-secretase but is cleaved by a-secretase (2). Along with other data (1), our results indicate that Aβ is responsible for the synaptic depression. I would note that since APP-MV does not produce synaptic depression, it is unlikely that P3 (the product of α- and γ-secretase) produces synaptic depression.

Our evidence supporting the view that secreted Aβ can produce synaptic depression comes from an experiment in which many postsynaptic neurons in a small region of a hippocampal slice are driven to overexpress APP. APP is coexpressed with GFP via an IRES construct so that cells overexpressing or not...  Read more


  Comment by:  Karen Hsiao Ashe
Submitted 1 November 2005  |  Permalink Posted 1 November 2005

Dr. Marchesi proposes that the accumulation of Aβ dimers in lipid rafts may disturb the normal regulation of APP cleavage, resulting in the overproduction of intramembranous Aβ dimers by creating a positive feedback mechanism for Aβ production. He proposes various effects of the abnormally high levels of intramembranous Aβ dimers including deleterious interactions with intramembranous segments of receptors, channels, and enzymes, like the presenilins and other secretases. He believes that these processes ultimately lead to neuronal death, which would in turn disrupt cognitive function. He also raises the important unanswered question of the physiological function of Aβ peptides in normal neurons, and suggests that certain lipid-associated Aβ peptides may facilitate normal function of ion channels or pumps or critical receptors. Presumably, the normal Aβ peptides are not the same as the pathological Aβ dimers, and the production of Aβ dimers may offset the levels or function of normal Aβ interactions within the membrane.

A provocative parallel is drawn between the GxxxG...  Read more


  Comment by:  Vincent Marchesi, ARF Advisor
Submitted 5 November 2005  |  Permalink Posted 5 November 2005

Reply by Vincent Marchesi to comment by Karen Ashe

Based on her recent studies, Dr. Ashe states that "the intramembranous Aβ dimers do not contribute substantially to cause memory and cognitive dysfunction or neuronal loss in mice." I have the following reply:

Dr. Ashe suggests, and most observers would agree, that the transgenic mice she and her coworkers have generated are useful animal models to study various changes in mouse brains that mimic to some extent what appear to be comparable changes in the brains of human patients with AD. She goes on to suggest that memory loss of affected Tg 2576 animals occurs without "significant" neuronal or synaptic loss and cites various publications which support this view. Here I have serious reservations for a number of reasons. First, and most obvious, we simply don't know anything about the pathophysiology of the early events that lead to memory loss, in either mice or people. This being the case, there is no way to rule out the possibility that small amounts of Aβ, or some as yet undetected substance, might...  Read more


  Comment by:  Lawrence Rajendran, Kai Simons
Submitted 8 November 2005  |  Permalink Posted 8 November 2005

The hypothesis by Vincent Marchesi is attractive and timely. Given that considerable effort in investigating the pathogenesis of AD is spent on the effects of plaque-associated extracellular Aβ, the article makes one rethink the direction of current investigations. We add two points to the ongoing debate.

1. GxxxG motif of Aβ and channel formation
In assessing Marchesi's hypothesis that Aβ forms heterodimers with APP and thereby interferes with the yet-to-be-identified physiological function of APP, the field might consider a recent paper by James Bowie's group (Kim et al., 2005). In it, the authors present evidence for yet another alternative hypothesis. They have identified a motif present in many membrane proteins, called "transmembrane glycine zippers." Its basic unit is the GxxxG motif, similar to what Marchesi proposed. The Bowie group shows that Aβ and PrP peptides contain the glycine zipper motif and that the glycines in the GxxxG motif of Aβ are critical for channel formation and for neuronal cell death in vitro. The GxxxG motif thus appears to mediate...  Read more


  Comment by:  Vincent Marchesi, ARF Advisor
Submitted 23 November 2005  |  Permalink Posted 23 November 2005

Vincent Marchesi: Summary and Impressions
It is a measure of the maturity of the Alzheimer disease field that many of its most prominent investigators seem willing, at least provisionally, to consider an alternative interpretation to the Aβ hypothesis that rests on so little experimental support. I take as one of the compelling reasons the fact that so many of the respondents share my view that the precise means by which Aβ peptides damage neurons and induce synaptic dysfunction are still very much unsettled issues. Even more unclear, in my opinion, is how the physicochemical changes that we measure can affect human memory, or what we attribute to memory in experimental animals.

By drawing attention to the possibility that Aβ peptides might concentrate within the membrane lipid bilayer itself, with the capacity to affect vital membrane functions, we have a whole new biochemistry to deal with and an opportunity to explore the biological consequences of hydrophobic interactions within a nonaqueous milieu. A large fraction of our functioning genome codes for...  Read more


  Comment by:  Gerd Multhaup, Lisa-Marie Munter
Submitted 2 December 2005  |  Permalink Posted 2 December 2005

We have done experimental work on the GxxxG motif of APP since we realized, almost 3 years ago, that it is part of the Aβ domain. To contribute to the theoretical discussion on a possible impact of the GxxxG motif on APP processing and Aβ toxicity, we would like to summarize shortly the data we have produced so far and that were presented at the last Society for Neuroscience conference in Washington.

This motif has a dual role for APP and Aβ. When we analyzed Aβ generation, we found strong evidence that the γ-secretase cleavage site depends on the oligomeric form of its substrate, which is strongly influenced by the GxxxG motif. Our results show that APP dimerization mediated by the transmembrane sequence decides on Aβ42 generation. In Aβ, the same motif determines if mature fibrils are formed. The enclosed abstract provides information as given at the SfN conference on 14 November in Washington.

Dimeric assembly of the APP membrane-spanning domain defines a selective γ-secretase cleavage site

LM Munter (FU Berlin), P Voigt (UKBF), E Lindner (TU München), M Schaefer...  Read more

  Submit a Comment on this Paper
Cast your vote and/or make a comment on this paper. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend this paper

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
 
 
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad