Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: Papers of the Week
Annotation


Hasegawa T, Ukai W, Jo DG, Xu X, Mattson MP, Nakagawa M, Araki W, Saito T, Yamada T. Homocysteic acid induces intraneuronal accumulation of neurotoxic Abeta42: implications for the pathogenesis of Alzheimer's disease. J Neurosci Res. 2005 Jun 15;80(6):869-76. PubMed Abstract, View on AlzSWAN

  
Comments on Paper and Primary News
  Primary News: Neurotoxic Homocysteine Metabolite Boosts Intracellular Aβ

Comment by:  Barney Dwyer, Hyoung-gon Lee, Akihiko Nunomura, George Perry, ARF Advisor (Disclosure), Mark A. Smith (Disclosure), Xiongwei Zhu
Submitted 31 May 2005  |  Permalink Posted 31 May 2005

Homocysteine and AD: More Than Meets the Eye
Hyoung-gon Lee, Mark A. Smith, Barney Dwyer, Aki Nunomura, George Perry, Xiongwei Zhu Increased levels of plasma homocysteine (HC), a key metabolic intermediate in sulfur amino acid metabolism, have been associated with several disorders including Alzheimer disease (AD). While HC is toxic in cell culture models including primary cortical neurons, the mechanism of HC toxicity and the role of HC in disease pathogenesis remain unclear. Hasegawa and colleagues hypothesized that homocysteic acid (HA), an oxidant product of HC, might play an important role in the pathogenesis of AD by regulating amyloid-β (Aβ) production. They demonstrate that HA dramatically decreases the extracellular level of Aβ42 but increases the intracellular level of Aβ42 in primary cortical neurons and APP-overexpressing CHO cells, and they suggest that this is associated with HA toxicity. This finding led them to show that a γ-secretase inhibitor prevents HA toxicity. While the level of HC is increased both in plasma and CSF in AD, there is no change in...  Read more

  Primary News: Neurotoxic Homocysteine Metabolite Boosts Intracellular Aβ

Comment by:  Andrew McCaddon (Disclosure)
Submitted 31 May 2005  |  Permalink Posted 6 June 2005

Homocysteine, oxidative stress, and AD: An even more vicious cycle!
Commenting on Hasegawa et al., Dwyer and collaborators note that elevated homocysteine may participate in a vicious cycle involving iron dysregulation, resulting in oxidative stress seen in AD (Dwyer et al., 2004). Their proposed mechanism suggests that localized heme deficiency in AD brain could result in loss of cystathionine β-synthase redox responsiveness and incur increased homocysteine during periods of oxidative stress.

It is also important to note that the other major route of homocysteine metabolism, the methionine synthase reaction, is also exquisitely sensitive to oxidative stress. We have proposed a complementary mechanism whereby such stress impairs methionine synthase activity (McCaddon et al 2002; McCaddon and Kelly, 1992, and see Alzheimer Research Forum "A cobalaminergic hypothesis.")

Taken together, these two mechanisms suggest that it might be important to address oxidative stress as well as B vitamin deficiency in cognitively impaired patients presenting with...  Read more


  Primary News: Neurotoxic Homocysteine Metabolite Boosts Intracellular Aβ

Comment by:  Sigfrido Scarpa
Submitted 7 June 2005  |  Permalink Posted 7 June 2005

I look at the results reported bearing in mind that homocysteine is one of the products of S-adenosylmethionine metabolism. It has been recently reported by my group (Scarpa et al., 2003 and Fuso et al., 2005) that both PS1 and BACE are regulated by DNA methylation and that accumulation of homocysteine, obtained by starvation of B12 and folate in the culture medium, increased amyloid production. As far as amyloid release (Fig. 1) and the ratio between intracellular and extracellular concentrations of the two Aβ species, my comment is that HA administration, by changing the methylation status of membrane lipids, among several other events, could decrease the fluidity of the membranes and therefore the secretion. Consequently, amyloid accumulates inside the cells (Fig. 3A and 4).

I think it is important to look carefully at the main metabolism in which homocysteine is involved. The main product in the pathway is S-adenosylmethionine, the donor of all the methylation reactions. The...  Read more


  Primary News: Neurotoxic Homocysteine Metabolite Boosts Intracellular Aβ

Comment by:  Mary Reid
Submitted 6 June 2005  |  Permalink Posted 10 June 2005

Zou et al. (1) report that γ-secretase is involved in the processing of megalin. In view of the fact that megalin binds cubilin, the receptor for B12-intrinsic factor complex, and mediates uptake of the vitamin B12-transcobalamin complex (2), what are the implications for AD?

References:
1. Zou Z, Chung B, Nguyen T, Mentone S, Thomson B, Biemesderfer D. Linking receptor-mediated endocytosis and cell signaling: evidence for regulated intramembrane proteolysis of megalin in proximal tubule. J Biol Chem. 2004 Aug 13;279(33):34302-10. Epub 2004 Jun 4. Abstract

2. Gliemann J. Receptors of the low density lipoprotein (LDL) receptor family in man. Multiple functions of the large family members via interaction with complex ligands. Biol Chem. 1998 Aug-Sep;379(8-9):951-64. Review. Abstract

View all comments by Mary Reid


  Primary News: Neurotoxic Homocysteine Metabolite Boosts Intracellular Aβ

Comment by:  Mary Reid
Submitted 26 May 2005  |  Permalink Posted 18 June 2005

Does homocysteic acid also induce expression of HERP ( Homocysteine- and endoplasmic reticulum stress-inducible protein, ubiquitin-like domain-containing, 1)? Sai et al. (1) report that HERP increases the generation of amyloid beta-protein (Abeta) and that Herp interacts with presenilin (PS).

References:
FEBS Lett. 2003 Oct 9;553(1-2):151-6. The ubiquitin-like domain of Herp is involved in Herp degradation, but not necessary for its enhancement of amyloid beta-protein generation. Sai X, Kokame K, Shiraishi H, Kawamura Y, Miyata T, Yanagisawa K, Komano H. Department of Dementia Research, National Institute for Longevity Sciences, Obu, Aichi, Japan. Herp is an endoplasmic reticulum (ER)-stress-inducible membrane protein, which has a ubiquitin-like domain (ULD). However, its biological function is as yet unknown. Previously, we reported that a high expression level of Herp in cells increases the generation of amyloid beta-protein (Abeta) and that Herp interacts with presenilin (PS). Here, we addressed the role of the ULD of Herp in Abeta generation and intracellular Herp stability. We found that the ULD is not essential for the enhancement of Abeta generation by Herp expression and the interaction of Herp with PS, but is involved in the rapid degradation of Herp, most likely via the ubiquitin/proteasome pathway. Thus, the ULD of Herp most likely plays a role in the regulation of the intracellular level of Herp under ER stress. PMID: 14550564 [PubMed - indexed for MEDLINE]

View all comments by Mary Reid
  Submit a Comment on this Paper
Cast your vote and/or make a comment on this paper. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend this paper

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
 
 
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad