Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: Papers of the Week
Annotation


Baki L, Shioi J, Wen P, Shao Z, Schwarzman A, Gama-Sosa M, Neve R, Robakis NK. PS1 activates PI3K thus inhibiting GSK-3 activity and tau overphosphorylation: effects of FAD mutations. EMBO J. 2004 Jul 7;23(13):2586-96. PubMed Abstract, View on AlzSWAN

Comments on Related News
  Related News: Poles Apart—The Tau Kinase GSK3β Separates Axons and Dendrites

Comment by:  Fred Van Leuven (Disclosure)
Submitted 19 January 2005  |  Permalink Posted 19 January 2005

Both Cell papers extend the cascades up- and downstream of GSK-3β considerably by providing molecular links from growth-factor signalling and cell adhesion to microtubule dynamics and axon organization—all most essential processes in evolution in "the making of a brain”!

Deficiency of the GSK-3β ortholog in Drosophila (shaggy/zeste-white 3) causes cells to adopt a neuronal phenotype as "default,” demonstrating the power that GSK-3β kinase has over neuronal development. This influence is further defined by both Cell papers. Most interesting is the appearance of a phosphatase, PTEN, among the wealth of kinases that occupy (litter?) this research field, although with its dual lipid and protein phosphatase activities, PTEN cannot be regarded as a simple addition.

Two more levels of complexity must be recognized. In addition to having its own complex molecular structures—two isozymes in mammals, at least five isoforms of shaggy in Drosophila, and four orthologs of GSK-3 in yeast—GSK-3 activity is regulated by many interacting proteins. On top of this...  Read more


  Related News: Poles Apart—The Tau Kinase GSK3β Separates Axons and Dendrites

Comment by:  Jesus Avila
Submitted 24 January 2005  |  Permalink Posted 24 January 2005

1136 In the last issue of Cell, Jiang et al. and Yoshimura et al. have published two excellent articles about the role of GSK3 in determining neuronal polarity.

In most cases, a neuron has a single axon and several dendrites. This type of neuronal polarity is very important for neural network function where signal transmission goes from the axon to the dendrites.

Changes in two cytoskeletal structures, microfilaments and microtubules, have been involved in the establishment of neural polarity. The work of several groups like those of Dotti or Matus has been focused on the role of microfilaments, whereas many other groups have studied the role of microtubules, mainly that of tubulin-binding proteins, in the development of neuronal polarity.

In the first paper, Jiang et al. described the importance of a kinase, GSK3, and a phosphatase, PTEN, in facilitating axonogenesis. In the second paper, Yoshimura et al. have looked for a GSK3 substrate that could be involved in axonogenesis. They found that such a substrate was the tubulin-binding protein CRMP-2, and that CRMP-2...  Read more


  Related News: Poles Apart—The Tau Kinase GSK3β Separates Axons and Dendrites

Comment by:  Nikolaos K. Robakis
Submitted 24 January 2005  |  Permalink Posted 24 January 2005

I think these are very interesting papers from the AD point of view, especially since PS1 is involved in the PI3K/Akt pathway which regulates GSK3 and its downstream target CRMP-2. Specifically it has been shown (see Baki et al., 2004) that PS1 downregulates the activity of GSK3β by stimulating the PI3K/Akt pathway. FAD mutations interfere with the function of PS1 in the PI3K/Akt signaling and this results in upregulation of GSK3β and tau overphosphorylation (Baki et al., 2004).

Since PS1 regulates the PI3K signaling and GSK3 activity, the findings of the Cell papers imply that PS1 may also affect the activity of CRMP-2 (See fig. 7 in Kaibuchi's paper, reproduced above) and this suggests (although it does not prove) that PS1 may also be involved in determining neuronal polarity. Other labs, including that of Dr. Takashima, have also shown that PS1 regulates GSK3 activity.

On the other hand, I find the suggestion of a linkage between CRMP-2 and NFTs a little premature, but reasonable.

View all comments by Nikolaos K. Robakis

  Submit a Comment on this Paper
Cast your vote and/or make a comment on this paper. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend this paper

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
 
 
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad