Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: Papers of the Week
Annotation


Wang J, Liu S, Fu Y, Wang JH, Lu Y. Cdk5 activation induces hippocampal CA1 cell death by directly phosphorylating NMDA receptors. Nat Neurosci. 2003 Oct;6(10):1039-47. PubMed Abstract

  
Comments on Paper and Primary News
  Primary News: Tau Kinase Mediates Stroke Damage

Comment by:  Li-Huei Tsai
Submitted 29 September 2003  |  Permalink Posted 29 September 2003

In this study, YM Lu and colleagues have unambiguously demonstrated the significance of S1232 phosphorylation of the NMDA receptor subunit NR2A by the p25/Cdk5 kinase in ischemic-induced CA1 neuronal death. They elegantly show that inhibition of p25/Cdk5 by expression of dominant-negative mutants of Cdk5 protects CA1 neurons from ischemic injury. They also highlight the role of S1232 phosphorylation in this process with experimental data showing that expression of the mutant NR2A harboring alanine1232 fully protects neurons from ischemic injury. It should be noted that this study as well as a previous report from H Pant's laboratory (Li et al., 2001) suggest that S1232 phosphorylation upregulates NMDA receptor channel activity. Interestingly, p25 accumulation and Cdk5 activation following ischemia seem to occur upstream of the modification in NMDA receptor function; this is because MK-801, a specific noncompetitive antagonist of NMDA receptors, prevents neuronal...  Read more

  Primary News: Tau Kinase Mediates Stroke Damage

Comment by:  Lit-Fui Lau
Submitted 6 October 2003  |  Permalink Posted 6 October 2003

Wang et al. suggest that ischemia-induced neuronal cell death may be mediated by activation of Cdk5. The authors propose that Cdk5 phosphorylates the NR2A subunit of the NMDA receptor complex and potentiates excitotoxicity mediated by this glutamate-gated ion channel. These data suggest that inhibition of Cdk5 may reduce ischemic injuries for patients.

The present study has not only provided a novel mechanism for ischemia-induced neurodegeneration, but has also pointed to new directions for AD research. Cdk5 activity has been found to be elevated in AD brains (1,2). Mechanisms leading to Cdk5 activation are unclear. Despite inconsistent findings from different laboratories (3-6), an activator of Cdk5, p25, has been reported to be present at higher levels in AD compared to control brains (2,7). The protease responsible for p25 production, calpain, is activated in AD brains as well (6,8,9). Taking these data together, the present paper by Wang et al. would suggest that phosphorylation of the NR2A subunit on Ser1232 might be increased in AD brains. Therefore, examination of the...  Read more

Comments on Related Papers
  Related Paper: Expression of Ca(2+)-permeable AMPA receptor channels primes cell death in transient forebrain ischemia.

Comment by:  Li-Huei Tsai
Submitted 7 July 2004  |  Permalink Posted 7 July 2004

A previous study from Dr. YouMing Lu and colleagues reported that Cdk5 activation after ischemia leads to activation of the NMDA receptor via Ser1232 phosphorylation of NR2A (Wang et al., 2003). The authors further demonstrated that calpain activation and p25 production following ischemia was prevented by the AMPA receptor antagonist NBQX. In this study, Lu and colleagues provide additional evidence for the role of AMPA receptors during ischemia. Previously it was suggested that ischemia reduces GluR2 levels in CA1, which indicates that AMPA receptors become more permeable to Ca++ influx. This increased permeability may lead to neuronal death. This is the so-called GluR2 hypothesis (Pellegrini-Giampietro et al., 1997).

This study experimentally addresses the GluR2 hypothesis in ischemia by using Semliki Forest Virus (SFV) to mutagenize synaptic AMPA receptor channels in the hippocampus (Liu et al., 2004). The whole-cell patch-clamp recordings elegantly show that reduced GluR2 expression following ischemia induces Ca++ increases in vulnerable neurons. Furthermore, normally...  Read more

  Submit a Comment on this Paper
Cast your vote and/or make a comment on this paper. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend this paper

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
 
 
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad