Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: Papers of the Week
Annotation


Chen HK, Fernandez-Funez P, Acevedo SF, Lam YC, Kaytor MD, Fernandez MH, Aitken A, Skoulakis EM, Orr HT, Botas J, Zoghbi HY. Interaction of Akt-phosphorylated ataxin-1 with 14-3-3 mediates neurodegeneration in spinocerebellar ataxia type 1. Cell. 2003 May 16;113(4):457-68. PubMed Abstract

  
Comments on Paper and Primary News
  Primary News: Polyglutamine Disease Therapy—Bypass the Glutamine?

Comment by:  Li-Huei Tsai
Submitted 26 May 2003  |  Permalink Posted 26 May 2003

The papers by Chen et al., 2003 and Emamian et al., 2003 offer compelling and complementary evidence for the significance of a single phosphorylation event—serine 776 of ataxin-1—on the pathogenesis of the polyglutamine-induced neurodegenerative disease spinocerebellar ataxia type 1 (SCA1). Emamian et al. showed that, while wild-type ataxin-1[82Q] induced profound nuclear inclusions, the A776 mutant failed to form nuclear inclusions in transfected cells. Remarkably, the ataxin-1[82Q]-A776 transgenic mice also exhibited reduced nuclear inclusions in Purkinje cells, and concomitantly displayed very mild, if any, degeneration of these cells, compared to mice expressing wild-type ataxin-1[82Q].

In the same order of ideas, Chen et al. provided a molecular mechanism underlying the difference in the pathogenesis of mutant and wild-type ataxin-1. They found that 14-3-3e and z selectively bound to S776 phosphorylated ataxin-1, but not to A776...  Read more


  Primary News: Polyglutamine Disease Therapy—Bypass the Glutamine?

Comment by:  Benjamin Wolozin, ARF Advisor (Disclosure)
Submitted 27 May 2003  |  Permalink Posted 27 May 2003

Phosphorylation of proteins is known to be associated with neurodegeneration, but the causal relationship between phosphorylation and neurodegeneration is unclear. Two articles by the laboratories of Harry Orr and Huda Zoghbi in the current Neuron and Cell, respectively, highlight the importance of phosphorylation in neurodegeneration. These labs have investigated the role of phosphorylation in neurodegeneration induced by expanded polyglutamine repeats in ataxin-1. Orr’s group noted that phosphorylation of Serine 776 of ataxin-1 was associated with inclusion formation and neurodegeneration. To test the causative role, they generated a mouse that carried an ataxin-1 gene that lacked Serine 776,

but contained an expanded polyglutamine repeat. The mice had substantially reduced toxicity. In their article, Zoghbi’s group looked at 14-3-3 protein, which binds phosphorylated proteins, and showed that 14-3-3 binds ataxin-1. Binding of 14-3-3 to ataxin-1 appears to slow its degradation. Together, these articles suggest that phosphorylation plays an important role in the accumulation...  Read more


  Primary News: Polyglutamine Disease Therapy—Bypass the Glutamine?

Comment by:  Henry Querfurth
Submitted 18 September 2003  |  Permalink Posted 18 September 2003

Akt-1: The Good Guy Takes a Knock but Stays the Course

Opening scene: Akt protects its king (i.e., neuron) from dark forces. Protein kinase B (PKB or Akt) is a family of serine-threonine kinases with three isoforms. Following activation by either of the numerous receptor tyrosine kinases, Akt phosphorylates substrates bearing the R-x-R-x-x-S/T-F/L consensus motif. The first step in Akt’s activation is a conformational change upon binding of its Pleckstrin homology domain to the PI3K product, membrane phospholipid phosphatidylinositol 3,4,5-P3). Recruitment of Akt to the membrane is then a signal for the sequential phosposrylations of threonine 308 and serine 473 by the phosphoinositide-dependent protein kinases PDK1 and 2, respectively. Phosphorylation of both sites is required for Akt to become fully active.

Akt is a multifunctional gatekeeper molecule to many signaling events downstream of growth factor stimulation (Datta et al., 1999;   Read more

  Submit a Comment on this Paper
Cast your vote and/or make a comment on this paper. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend this paper

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
 
 

REAGENTS/MATERIAL:

Lysates from transfected COS1 cells were immunoprecipitated by either anti-FLAG or anti-HA antibodies and analyzed by immunoblotting with anti-FLAG or mixtures of anti-HA and anti-14-3-3ζ antibodies. Used antibody PN1168 to test Ataxin-1 for phosphorylation.

Studied Drosophila expressing dAkt1 or ataxin-1[82Q] and double tg flies (SCA182Q/dAkt1).

Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad