Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: Papers of the Week
Annotation


Kirik D, Annett LE, Burger C, Muzyczka N, Mandel RJ, Björklund A. Nigrostriatal alpha-synucleinopathy induced by viral vector-mediated overexpression of human alpha-synuclein: a new primate model of Parkinson's disease. Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2884-9. PubMed Abstract


Corresponding Author: Deniz Kirik
  
Comments on Paper and Primary News
  Primary News: Viral Transgene Models Parkinson's in Primate

Comment by:  Ronald Klein
Submitted 28 February 2003  |  Permalink Posted 28 February 2003

The findings by Kirik et al. are a breakthrough because they provide a human-like model of Parkinson's disease and make the earlier findings in rats (Kirik et al., 2002; Lo Bianco et al., 2002; Klein et al., 2002) even more relevant for Parkinson's disease. The authors note the involvement of α-synuclein and oxidative stress. To pursue this, and probably in rats for feasibility, subjects will be monitored for markers of oxidative stress and mitochondrial function after α-synuclein gene transfer. Alternatively, diets either rich or deficient in antioxidants can be tested for their effects on the α-synuclein vector-induced disease.

View all comments by Ronald Klein

  Primary News: Viral Transgene Models Parkinson's in Primate

Comment by:  James Galvin, ARF Advisor
Submitted 3 March 2003  |  Permalink Posted 3 March 2003

"A model, a model...my kingdom for a model!"

At last, a model that appears to recapitulate not only some of the motor features of Parkinson's disease, but also the pathology. Even as we have come to understand the importance of α-synuclein in the pathophysiology of PD and other Lewy body disorders, the field has been hampered by the paucity of animal models that recapitulate the major pathology, particularly in regard to the substantia nigra. Kirik and colleagues should be applauded for at last contributing a primate model that is likely to advance the field. In addition, this technology can potentially be applied to rodent models that will substantially shorten the study time to test hypotheses regarding oxidative stress, free radicals, and mitochondrial function and the development of Parkinson's disease.—James Galvin, Washington University School of Medicine, St. Louis, Missouri.

View all comments by James Galvin


  Primary News: Viral Transgene Models Parkinson's in Primate

Comment by:  Curt Freed
Submitted 3 March 2003  |  Permalink Posted 3 March 2003

I liked the article on unilateral α-synuclein expression in the marmoset monkey as a model of Parkinson’s. The biggest problem with the model is that it has minimal behavioral effects compared to the MPTP model. With MPTP injected unilaterally in the internal carotid artery, the opposite side of the body becomes strongly Parkinsonian with slow movements of the arm and leg on that side. When animals are given apomorphine or amphetamine, they circle intensely—after amphetamine, in a direction towards the side of the lesion, and with apomorphine, in a direction opposite to the side of the lesion. For therapeutic interventions such as neurotransplantation, a robust behavioral component is essential. It is likely that dopamine depletion on the lesioned side was not severe enough to see strongly lateralized behavioral effects. Dopamine concentrations in the striatum and substantia nigra are not reported, but cell loss was 30 to 60 percent. In rats, dopamine concentrations in striatum have to be reduced by 95 percent to see drug-induced circling.

The primary value of the marmoset...  Read more

  Submit a Comment on this Paper
Cast your vote and/or make a comment on this paper. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend this paper

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
 
 

REAGENTS/MATERIAL:

Adult common marmosets (Callithrix jacchus), four males, and four females were used.

Immunohistochemical stainings on brain sections used antibodies raised against tyrosine hydroxylase (TH; rabbit IgG, 1:250, Pel-Freez Biologicals), GFP (rabbit IgG, 1:20,000, Abcam), vesicular monoamine transporter-2 (VMAT-2; rabbit IgG, 1:2,000, Chemicon), Hu (mouse IgG, 1:1,000, gift of S. A. Goldman, Cornell University), and human alpha-syn (mouse IgG, 1:16,000, courtesy of V. M. Lee, University of Pennsylvania, Philadelphia).

FUTURE DIRECTION:
This work provides a very useful primate model of Parkinson's disease that parallels the progression of idiopathic PD in several respects, namely in having similar pathological features and developing slowly. As such, it may be a useful, though expensive, model to test potential therapeutics, diets, or regimens that may slow PD progression.

Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad