Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: Papers of the Week
Annotation


Sheng JG, Price DL, Koliatsos VE. Disruption of corticocortical connections ameliorates amyloid burden in terminal fields in a transgenic model of Abeta amyloidosis. J Neurosci. 2002 Nov 15;22(22):9794-9. PubMed Abstract

  
Comments on Paper and Primary News
  Primary News: Can Travel, Will Deposit: Aβ via the Perforant Pathway?

Comment by:  Gunnar K. Gouras, ARF Advisor
Submitted 16 November 2002  |  Permalink Posted 16 November 2002

These papers provide exciting new evidence that plaque formation can occur from axonally transported APP/Aβ. Both investigations unilaterally lesioned the perforant pathway of plaque-bearing APP Swedish/PS1DE9 mice and found markedly reduced amyloid plaque burden one month postlesion in the ipsilateral hippocampus, especially in the molecular layer of the dentate gyrus. The Lazarov et al. study, with the less ideal title, additionally demonstrated provocative evidence that preplaque unilaterally lesioned mice do not have differences in hippocampal plaque burden when they were sacrificed four months post-lesion. However, both studies are consistent with our recent study demonstrating that Aβ accumulation and plaque formation occurs within neuronal processes/synaptic compartments.

View all comments by Gunnar K. Gouras

  Primary News: Can Travel, Will Deposit: Aβ via the Perforant Pathway?

Comment by:  Peter Davies
Submitted 18 November 2002  |  Permalink Posted 18 November 2002

Tangles Come before Plaques on the Perforant Pathway
The one system where transport of APP and its relationship to amyloid deposition has now been well-established is the perforant pathway. Hyman and colleagues (Hyman et al., 1986; Hyman et al., 1988) pointed out some years ago that this pathway was one of the earliest affected in Alzheimer's disease, with the evidence based largely on the presence of tau abnormalities and tangles in the entorhinal cortex neurons projecting to the hippocampus. The studies of Hyman and of Braak and colleagues (Braak et al., 1991) make clear that at least in this pathway, tau pathology in entorhinal neurons precedes amyloid deposition in the terminal fields, and it is tempting to speculate that at least in this one case, abnormalities of APP processing, and deposition of beta amyloid in the terminal fields may be a result from the...  Read more

  Primary News: Can Travel, Will Deposit: Aβ via the Perforant Pathway?

Comment by:  Vassilis Koliatsos
Submitted 19 November 2002  |  Permalink Posted 19 November 2002

The two studies demonstrate that if you interrupt the supply of APP to terminals in cortical brain circuits, you abort even existing amyloid deposits outside neurons. This shows that you need a constant supply of APP to maintain the plaques, or that structural changes in the brain that follow these manipulations (what we call "plasticity") disrupt, in biochemical or even physical fashion, the microenvironment of the brain neuropil enough to "break" the plaque deposits. We used a model different from Sam and his colleagues, simply because I did not like the Scouten knife when I used it in the past, but the results are very similar.

The two studies also have slightly different emphases; we focused more on the hippocampal microanatomy, whereas Sam and his colleagues focused more on a time course of events. I am also a bit more conservative in the interpretation of findings. I believe we cannot draw conclusions on why this very interesting phenomenon happens, and that the two interpretations set up above (i.e., dynamic balance between buildup and cleansing versus plasticity of...  Read more


  Comment by:  Andre Delacourte, ARF Advisor
Submitted 22 November 2002  |  Permalink Posted 22 November 2002
  I recommend this paper

  Primary News: Can Travel, Will Deposit: Aβ via the Perforant Pathway?

Comment by:  Alexei R. Koudinov
Submitted 22 November 2002  |  Permalink Posted 22 November 2002

See a BIG picture
I read with great interest the article by Lazarov et al. As the authors state, they set "to examine whether APP transported via the perforant pathway is a major contributor to accumulation of Aβ deposits in the hippocampus." They "performed unilateral lesions of the perforant pathway of transgenic mice which express both the FAD-linked human PS1-E9 variant and a chimeric mouse-human APP Swedish (APPswe) and assessed amyloid burden in the hippocampal formation after the lesion." They further concluded that the "findings are consistent with the compelling in vivo demonstrations that, in diffuse plaques of AD patients and aged nonhuman primates, Aβ is present along neuronal dendrites and around the soma of neurons included in the plaques."

It is important to notice that the article misses the Congo red (or thioflavin) staining for plaque-like amyloid, and largely relies on the 6E10 antibody that recognizes just the human sequence of Aβ protein. Two unresolved issues are: How would the rodent’s own APP and Aβ behave under the experimental condition of...  Read more

  Submit a Comment on this Paper
Cast your vote and/or make a comment on this paper. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend this paper

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
 
 
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad