Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: Papers of the Week
Annotation


Akoury E, Pickhardt M, Gajda M, Biernat J, Mandelkow E, Zweckstetter M. Mechanistic basis of phenothiazine-driven inhibition of tau aggregation. Angew Chem Int Ed Engl. 2013 Mar 18;52(12):3511-5. PubMed Abstract

  
Comments on Paper and Primary News
  Comment by:  Charlie Harrington (Disclosure), John Storey, Claude Wischik
Submitted 19 February 2013  |  Permalink Posted 19 February 2013

When we first isolated a fragment of tau protein from the repeat domain for the proteolytically stable core (1), this represented the first rigorous demonstration that tau protein contributes to the structural core of the paired helical filaments (PHFs) which comprise the neurofibrillary tangle originally discovered by Alzheimer. Prior claims linking tau protein with tangles based on immunohistochemical staining of tangles included neurofilament protein, vimentin, and MAP2 as well as tau (2), and did not help answer the questions, How is the PHF put together? How much of the PHF is tau? How might one design a therapy targeting this pathology?

A widely quoted paper by Lee et al. claimed the complete dissolution of a subclass of PHFs isolated on the basis of insolubility in sarkosyl, and that the PHF is composed entirely of full-length hyperphosphorylated tau (3). It turned out this was based on a circular argument in which only antibodies recognizing hyperphosphorylated tau were used. When an assay was developed which permitted measurement of total PHF-tau as well as...  Read more


  Comment by:  Eckhard Mandelkow
Submitted 20 February 2013  |  Permalink Posted 20 February 2013

The commentary by Claude Wischik contains a review of some key discoveries in the study of the structure of paired helical fragments (PHFs) of tau, many by him and his collaborators, including the inhibitory effects of methylene blue on tau aggregation. With regard to our paper, his main argument is that the oxidative effects of methylene blue on tau cannot explain its effects in cells, contrary to what we suggest. In our view, his critique does not really address the point we are trying to make in our paper. We also question some of his claims about PHFs.

In 2008, Wischik and colleagues claimed that methylene blue was beneficial as a treatment of AD (Wischik et al., 2008). This approach was based on the assumption that methylene blue inhibits the aggregation of tau (Wischik et al., 2006). Indeed, several authors (e.g., Taniguchi et al., 2005; Schirmer et al., 2011) have confirmed that methylene blue can act directly as an inhibitor of tau aggregation in vitro. Tau aggregation is considered to be a key step in AD pathology and, therefore, it is appropriate to ask how...  Read more


  Comment by:  Markus Zweckstetter
Submitted 21 February 2013  |  Permalink Posted 21 February 2013

Our study investigated the mechanism of inhibition of tau aggregation by methylene blue and its metabolites, azure A and B, when starting from the tau monomer—that is, the conformation that is able to bind to microtubules. NMR spectroscopy together with mass spectrometry unambiguously proved that the cysteine residues of tau are modified to sulfenic, sulfinic, and sulfonic acids. Importantly, the methylene blue-induced oxidation of cysteines is key to the inhibition of tau aggregation, as methylene blue does not influence aggregation of a cysteine-free tau variant.

Claude Wischik now argues that this cannot be the mechanism of aggregation inhibition, as it could not explain methylene blue-induced dissociation of tau aggregates. Apparently, there might be two different things going on—inhibition of conversion from monomer to tau aggregates might work by a different mechanism than dissociation of preformed aggregates. Indeed, using NMR spectroscopy, we showed that upon oxidation of the cysteine residues of tau, conformational changes also occur in the second...  Read more


  Comment by:  Peter Davies
Submitted 21 February 2013  |  Permalink Posted 21 February 2013

The assumption behind all the work with methylene blue is that inhibition of tau aggregation is going to be good for people. Some of the same arguments have been made about Aβ, but that field seems to have drifted toward the idea that it is not the aggregates that are the problem, at least not the large aggregates. In the tau arena, the work of Mel Feany's group with flies seems to say that tau toxicity can occur in the absence of visible aggregates, and Karen Ashe's group working with the Tg4510 mouse seems to be heading in the same direction. Reading the literature leaves me with the notion that tau aggregation could be good, bad, or irrelevant, and it is hard to be convinced which of these is correct. The Mandelkows, and here Zweckstetter, do their usual elegant job of working out precisely what methylene blue and its metabolites do to tau, and I suppose that further testing in the various fly and mouse models might tell us whether or not that was a good thing or a bad thing. The final answer really has to come from human clinical trials, which are underway. I have not been...  Read more

  Primary News: Does TauRx Drug Work by Oxidizing Tau?

Comment by:  P. Hemachandra Reddy
Submitted 21 February 2013  |  Permalink Posted 21 February 2013
  I recommend this paper
  Submit a Comment on this Paper
Cast your vote and/or make a comment on this paper. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend this paper

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
 
 
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad