Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: Papers of the Week
Annotation


Busche MA, Chen X, Henning HA, Reichwald J, Staufenbiel M, Sakmann B, Konnerth A. Critical role of soluble amyloid-β for early hippocampal hyperactivity in a mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A. 2012 May 29;109(22):8740-5. PubMed Abstract

  
Comments on Paper and Primary News
  Comment by:  Brad Dickerson
Submitted 22 May 2012  |  Permalink Posted 22 May 2012

These data provide some of the strongest support to date of the hypothesis that Aβ species—likely soluble forms of Aβ— interfere with synaptic function in vivo and are associated with a hyperactive circuit within the hippocampus. Further investigations of this animal model will likely provide important additional information about the mechanisms of aberrant physiology in the context of pre-plaque Aβ-related hippocampal dysfunction. It would be particularly interesting to investigate whether the hyperactivation further promotes Aβ release and possibly fibrillar accumulation in a vicious cycle. In addition, these findings further support the potential value of functional MRI markers of hippocampal hyperactivation in living humans with MCI as indicators of circuit dysfunction, and suggest that hippocampal hyperactivation should be investigated as a possible early marker of therapeutic response in clinical trials in which Aβ-modifying drugs are given to humans.

View all comments by Brad Dickerson

  Comment by:  Ann Hake
Submitted 21 May 2012  |  Permalink Posted 23 May 2012
  I recommend this paper

  Comment by:  Sylvain Lesne
Submitted 18 June 2012  |  Permalink Posted 18 June 2012

In the past weeks, two studies using APPxPS1 transgenic animals describe abnormal calcium homeostasis as a potential early event in asymptomatic pre-plaque mice. Despite remarkable technical skills displayed by both teams, there studies might suffer from the same experimental confound.

The first report, by Arthur Konnerth’s group (Busche et al., 2012), is a follow-up study of previous work from the same group (Busche et al., 2008), which suggested the presence of clusters of hyperactive neurons near amyloid plaques in the bigenic APP23xPS45 mouse model. Using the same APP transgenic mice, this new article documents an impressive use of two-photon microscopy to investigate potential dysregulation of calcium signaling in hippocampal neurons in vivo. The authors report that, not only does apparent elevation of calcium signaling occur around plaques, but also that it takes place in younger, pre-plaque animals. Following the demonstration that spontaneous Ca2+ transients correspond to neuronal activity, Konnerth’s group then acutely applied the γ-secretase inhibitor LY-411575 to...  Read more

Comments on Related Papers
  Related Paper: Early presynaptic and postsynaptic calcium signaling abnormalities mask underlying synaptic depression in presymptomatic Alzheimer's disease mice.

Comment by:  Ilya Bezprozvanny
Submitted 10 July 2012  |  Permalink Posted 10 July 2012

In her previous series of papers, Dr. Stutzmann reported a number of abnormalities in calcium signaling and synaptic function resulting from presenilin FAD mutations. In the present paper, her group offers a comprehensive and physiologically relevant analysis of synaptic dysfunction in AD. Interestingly, her group shows abnormalities on both presynaptic and postsynaptic sides of the synapse in neurons from PS1-FAD mice, which helps to reconcile a number of previous observations. Overall, it is an excellent study of synaptic dysfunction in AD.

View all comments by Ilya Bezprozvanny
  Submit a Comment on this Paper
Cast your vote and/or make a comment on this paper. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend this paper

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
 
 
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad