Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: Papers of the Week
Annotation


Verret L, Mann EO, Hang GB, Barth AM, Cobos I, Ho K, Devidze N, Masliah E, Kreitzer AC, Mody I, Mucke L, Palop JJ. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell. 2012 Apr 27;149(3):708-21. PubMed Abstract

  
Comments on Paper and Primary News
  Comment by:  Jeffrey L. Noebels
Submitted 16 May 2012  |  Permalink Posted 16 May 2012

The incidence of epilepsy is dramatically elevated in humans with early-onset Alzheimer’s disease, in particular, those bearing mutations in FAD genes (APP, PS1, PS2, trisomy 21) as well as almost every genetically engineered mouse model that overexpresses Aβ peptide in the brain. However, clinicians who work closely with dementia patients are reluctant to consider the two disorders as related, since behavioral convulsions are brief and infrequent, and the steady cognitive decline of AD is unrelenting and accompanied by brain atrophy and cell death.

However, the presence of electrical rhythm disturbances, particularly when they occur in memory-related hippocampal networks, are not obvious; a patient may display only momentary confusion and amnesia. These seizures are also a cause of cell death and atrophy. And any neurological disorder that features neuronal degeneration is susceptible to brain rhythm disturbances at some stage, particularly once inhibitory synapses lose their ability to brake neuronal firing patterns. During this period when the brakes are failing, traffic...  Read more


  Comment by:  Vincent Villette
Submitted 16 May 2012  |  Permalink Posted 16 May 2012

I think this work is really interesting and reinforces the hypothesis that synchrony mediated by inhibition is crucial for brain computation, and these synchrony mechanisms are altered in familial or sporadic forms of AD.

View all comments by Vincent Villette

  Comment by:  Doo Yeon Kim
Submitted 17 May 2012  |  Permalink Posted 17 May 2012

In my opinion, one of the important contributions of this study is that it proposes a novel molecular mechanism underlying AD pathogenesis in addition to Aβ synaptotoxicity on excitatory neurons. Dr. Palop’s team nicely showed that parvalbumin-positive GABAergic neurons (PV neurons) were not fully functional in hAPPJ20 AD mice. They found mRNA and protein levels of Nav1.1 voltage-gated sodium channels were significantly decreased in these neurons, especially in the parietal cortical region. Importantly, restoration of Nav1.1 levels not only rescued the inhibitory neuronal deficits, but also reduced memory deficits and premature mortality in these mice without significantly affecting Aβ peptide levels. Aβ accumulation may directly or indirectly regulate Nav1.1 transcription in PV neurons.

Previously, we found that Nav1.1 mRNA and protein levels were also regulated by the intracellular domain of the neuronal voltage-gated sodium channel β2 subunit (Navβ2), generated by BACE1 and presenilin/γ-secretase cleavages of Navβ2 (Kim et al., 2007; Kovacs et al., 2010; Kim et al.,...  Read more

  Submit a Comment on this Paper
Cast your vote and/or make a comment on this paper. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend this paper

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
 
 
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad