Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: Papers of the Week
Annotation


Decker H, Lo KY, Unger SM, Ferreira ST, Silverman MA. Amyloid-beta peptide oligomers disrupt axonal transport through an NMDA receptor-dependent mechanism that is mediated by glycogen synthase kinase 3beta in primary cultured hippocampal neurons. J Neurosci. 2010 Jul 7;30(27):9166-71. PubMed Abstract

Comments on Paper and Primary News
  Comment by:  Stefan Kins
Submitted 14 July 2010  |  Permalink Posted 14 July 2010

Functional and structural alterations in synapses and axons represent an early feature of Alzheimer disease. Given the critical role of fast axonal transport (FAT) in the maintenance of these neuronal compartments, Decker et al. elaborate on a central question: Does Aβ affect FAT? In line with previous studies, these authors report a dramatic reduction in FAT of mitochondria and of vesicle-associated BDNF in hippocampal neurons incubated with Aβ. Such inhibition would unquestionably lead to neuronal dysfunction and eventually death. Unfortunately, the authors used a concentration of Aβ that likely is well above physiological and possibly also pathological levels. In this regard, it will be interesting to evaluate the effect of Aβ at much lower concentrations.

Significantly, Decker et al. provide convincing experimental evidence that the inhibitory effect of Aβ on FAT involves activation of GSK3β through activation of NMDR receptors. Pathogenic targets of GSK3β relevant to its inhibitory effect on FAT are not addressed in this work. However, previous studies by the groups of...  Read more


  Comment by:  Elliott Mufson, ARF Advisor (Disclosure)
Submitted 22 July 2010  |  Permalink Posted 22 July 2010
  I recommend this paper

This is an interesting and well-presented study, but as with many studies of Aβ toxicity, the dose used is extremely high and may not recapitulate what occurs in the human brain in patients with AD. Extrapolation from cell culture to the human disease is always risky business for the AD field. However, the concept of a defect in axonal transport continues to be an important issue independent of whether or not Aβ initiates this event.

View all comments by Elliott Mufson

  Comment by:  Zoia Muresan, Virgil Muresan
Submitted 25 July 2010  |  Permalink Posted 25 July 2010
  I recommend this paper

We intended to comment on this interesting paper from the Silverman lab prior to leaving for ICAD 2010, held in the beautiful island of Oahu, Hawaii, but time constraints made us postpone the submission of our comments. This turned out to be a good thing, because we now can integrate in our comment with new results presented at this meeting.

The idea that extracellular Aβ is in many ways toxic for neurons is no longer new, and is supported by solid results from many laboratories. One of these toxic effects targets axonal transport (1). Although the transport of mitochondria is particularly vulnerable to the presence of Aβ in the extracellular space (2), it is likely that axonal transport of many cargoes becomes impeded, as suggested by earlier studies (3,4). Previous studies have investigated the effect of monomeric and fibrillar Aβ on axonal transport, but—except for an ex-vivo study done in squid axoplasm (6)—did not specifically examine the effect of the diffusible Aβ oligomeric species, which are currently considered to be most relevant for the pathogenic mechanisms in...  Read more


  Comment by:  Fred Van Leuven (Disclosure)
Submitted 9 August 2010  |  Permalink Posted 9 August 2010
  I recommend this paper

I agree with the three previous commentators that the levels of Aβ used in these experiments are high. Then again, we have no idea what the Aβ content is in and around our neurons, or rather our synapses—the active ones that is—where Aβ is claimed to be produced! On the other hand, lesser Aβ levels can be anticipated to produce lesser, more graded rather than complete disruption of FAT, which would eventually fit the late onset and/or progressive nature of AD.

I did not have the pleasure that Virgil and Zoia Muresan had in attending ICAD Honolulu, and missed, therefore, the presentation by Zempel et al., but I would love to see their effects on tau! The raised—or renewed—controversy on whether Aβ affects FAT or not has been around for quite some time. My take on that issue is that the outcome of such in vitro studies depends on experimental conditions.

Regarding the role or contribution of GSK3, I remain very puzzled, c.q. hungry, because the Decker paper does lift the lid off the pot but does not look inside for what is cooking.

I agree with Stefan Kins that...  Read more

  Submit a Comment on this Paper
Cast your vote and/or make a comment on this paper. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend this paper

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
 
 

REAGENTS/MATERIAL:
Mouse monoclonal antibody against dynein IC 74 KD was received from Kevin Pfister (University of Virginia, Charlottesville). Rabbit polyclonal KIF1A, KIF5A and KIF5C antibodies were received from Lawrence S. B. Goldstein (University of California at San Diego). Rabbit polyclonal AβO antibody was prepared in the Laboratory of Neurodenegerative Diseases, Federal University of Rio de Janeiro, Brazil. Mouse monoclonal anti-Golgi matrix protein of 130 kDa (cis-Golgi marker GM130) was from BD Biosciences (Franklin Lakes, NJ). Rabbit polyclonal anti-MAP-2 or mouse monoclonal anti-MAP-2 antibodies were from Chemicon (Billerica, MA). Mouse monoclonal anti-tubulin (DM1A clone) was from Sigma-Aldrich (St. Louis, MO).

Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad