Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: Papers of the Week
Annotation


Peleg S, Sananbenesi F, Zovoilis A, Burkhardt S, Bahari-Javan S, Agis-Balboa RC, Cota P, Wittnam JL, Gogol-Doering A, Opitz L, Salinas-Riester G, Dettenhofer M, Kang H, Farinelli L, Chen W, Fischer A. Altered histone acetylation is associated with age-dependent memory impairment in mice. Science. 2010 May 7;328(5979):753-6. PubMed Abstract

  
Comments on Paper and Primary News
  Primary News: Histone Acetylation: Epigenetic Achilles’ Heel of Memory in Aging

Comment by:  Susan Su, Li-Huei Tsai
Submitted 7 May 2010  |  Permalink Posted 7 May 2010

Age-related cognitive decline is considered to be a consequence of the normal aging process in healthy adults and can result in slight impairments in working memory and other functional tasks. However, in neurodegenerative disease states such as Alzheimer disease, dementia severely impairs one’s memory, intellectual and social abilities, and causes a loss of identity. While a full understanding of the cellular and molecular processes in age-related cognitive decline or dementia is still lacking, a growing body of evidence suggests that epigenetic regulation and dysfunction of specific genes may play a central role in the pathogenesis of neurological disorders (for review, see Roth and Sweatt, 2009).

In the epigenetic landscape, various modifications, including histone acetylation or deacetylation, serve as important markers for chromatin remodeling and subsequently gene transcription. Histone deacetylase inhibitors (HDACi’s) allow for increased gene transcription by preventing the removal of the acetyl group on a lysine residue on a histone. HDACi’s have potential...  Read more


  Primary News: Histone Acetylation: Epigenetic Achilles’ Heel of Memory in Aging

Comment by:  Aleksey Kazantsev
Submitted 7 May 2010  |  Permalink Posted 7 May 2010

This article identifies altered histone acetylation as an early biomarker of memory impairment. More specifically, the authors show an altered acetylation response of a specific lysine residue, i.e., K12, of histone 4 in older mice, but not in young mice. Notably, age-dependent changes in K12 acetylation on H4 were ameliorated in mice treated with the drug SAHA, a pan-inhibitor of histone deacetylases. HDAC inhibitors may therefore provide a feasible approach for treating memory loss in human neurodegenerative conditions like Alzheimer disease. In that respect, future studies will have to demonstrate memory improvement in Alzheimer disease animal models treated with HDAC inhibitors, and correlate efficacy with changes in the acetylation state of H4K12. If these studies are positive, developing HDAC-based therapeutics appears feasible for symptomatic treatment of AD. However, while these results provide optimism, I would recommend caution at this stage, because results achieved in early pre-clinical studies often do not translate into efficacious effects in human trials.

View all comments by Aleksey Kazantsev
  Submit a Comment on this Paper
Cast your vote and/or make a comment on this paper. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend this paper

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
 
 

REAGENTS/MATERIAL:
Immunoblotting and staining: Brain tissue was homogenized prior to centrifugation. The supernatant was used for immunoblotting. Antibodies for histone-acetylation and Psd95 were from Upstate. The H4K12 antibody employed for ChIP was from Abcam and H3k9 ChIP antibody was from Millipore, Synaptoporin, GLuR1 and Map2 antibodies were from Synaptic Systems. The Formin 2 antibody was a gift from Philip Leder.

Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad