Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: News
News
News Search  
New Microarray Data Offer Grist for AD Hypothesizing Mills
8 February 2004. Check out the newest gene microarray results in the Alzheimer's brain, and see if they give a lift to some of your favorite hypotheses and molecular suspects. The study, by Eric Blalock, Philip Landfield, and colleagues at the University of Kentucky, Lexington, appeared in this week's early online PNAS.

Blalock and colleagues were following up on last year's similar study looking at changes in gene expression in normal aging (Blalock, et al., 2003). Hoping to obtain sufficient statistical power to avoid both high false positive and high false negative errors, the scientists gathered a sizable sample of hippocampal tissue from AD patients with "incipient" (MMSE 20 - 26; n = 7), moderate (MMSE 14 - 19; n = 8), and severe disease (MMSE < 14; n = 7), along with nine elderly controls. In all, the authors found that the expression of 3,413 genes was significantly correlated with MMSE score and/or the neurofibrillary tangle (NFT) index across all subjects. With regard to early events in AD pathogenesis, the authors found that 609 of these genes correlated with incipient AD versus controls, and of these, changes in 89 genes correlated with both MMSE score and NFT index.

Last year, researchers led by Paul Coleman at the University of Rochester, New York, reported a microarray analysis of five AD brains which indicated that genes involved in trafficking synaptic vesicles were selectively decreased in AD (Yao et al., 2003). The year before, Walter Lukiw and colleagues at Louisiana State University in New Orleans reported microarray data of hippocampal CA1 from AD patients (Colangelo et al., 2002). These scientists found transcription and neurotrophic factors to be downregulated and apoptotic and proinflammatory signaling molecules to be upregulated in AD patients versus controls. Other studies have found evidence for gene expression changes in genes related to synaptic function and remodeling (see ARF related news story).

In an attempt to cull biological meaning from their new wealth of data, Blalock et al. have used software called the Expression Analysis Systematic Explorer (EASE), which was developed by researchers at the National Institute of Allergy and Infectious Disease (Hosack et al., 2003). They found "widespread and apparently orchestrated" changes in transcription factors/signaling genes regulating proliferation and differentiation, particularly upregulation of tumor suppressors, oligodendrocyte growth factors, and protein kinase A pathway molecules. They also point to upregulation of genes involved in cell adhesion, apoptosis, lipid metabolism, and initial inflammation processes, and downregulation of genes involved in protein folding/metabolism/transport, as well as some energy metabolism and signaling pathways, roughly mirroring and expanding the data of Colangelo et al.

This kind of unbiased data is frequently used to generate new hypotheses, and the scientists present a model for incipient AD pathology that starts in the white matter. "Alterations in axons or myelin sheaths initially stimulate growth/remyelination responses in localized oligodendrocytes, which in turn secrete growth factors which activate adjacent neurons and glial cells. This triggers compensatory tumor suppressor responses specific to cell type which induce protein aggregation, affect axonal-myelin interactions, and result in NFTs. As NFT density increases, wider extracellular matrix, amyloid precursor protein, and inflammatory changes may be triggered which impact cognition," the authors write. In particular, the authors suggest that this model could help explain the apparent progression of AD pathology along efferents from entorhinal cortex to hippocampus and neocortex, "leaving NFTs and plaques in its wake."—Hakon Heimer.

Reference:
Blalock EM, Geddes JW, Chen KC, Porter NM, Markesbery WR, Landfield PW. Incipient Alzheimer’s disease: Microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc Natl Acad Sci U S A. 2004 Feb 9. Abstract

 
Comments on News and Primary Papers
  Comment by:  Karoly Mirnics
Submitted 8 February 2004  |  Permalink Posted 8 February 2004

The manuscript by Blalock et al. is one of the most comprehensive and intriguing postmortem DNA microarray studies to date. Importantly, this manuscript goes beyond the “most changed gene” concept, and focuses on the transcript networks putatively affected in the hippocampus of subjects with AD. The authors build a convincing case that the observed, coordinated expression pattern changes represent molecular correlates of cognitive decline observed in AD.

The generated dataset is extremely valuable and of great interest to a number of researchers who have no access to postmortem brain tissue. The performed data analyses are sound but, just like all other approaches in the microarray field, have caveats. It will be interesting to test if different analytical approaches to this data reveal some currently unanticipated relationships. Despite the statistical arguments, microarray data validation with an independent method is strongly recommended in these studies. This dataset can live up to its full potential only if the critical gene expression changes are verified by qPCR,...  Read more


  Comment by:  Stephen D. Ginsberg
Submitted 9 February 2004  |  Permalink Posted 9 February 2004

The comprehensive report by Eric Blalock et al. correlates gene expression levels garnered from cDNA microarray analysis of Alzheimer’s disease hippocampus with cognitive scores on the Mini Mental Status Examination (MMSE) and neurofibrillary tangle (NFT) counts across 31 people (nine controls, 22 AD patients with varying degrees of AD progression). Interestingly, the researchers identified many classes of transcripts that are regulated in what they deem “incipient AD,” or those with MMSE scores >20. Although it is somewhat unclear whether incipient AD is similar to the classification of mild cognitive impairment (MCI), without other global measures of neuropsychological testing it is quite possible that these two groups have considerable overlap. The researchers employed higher-order statistical analysis of gene expression using a package called the EASE program. This revealed upregulation of signaling markers and tumor suppressor genes, as well as oligodendrocyte growth factors, among others. Based upon these observations, the group put forth a provocative new model of AD...  Read more

  Comment by:  Paul Coleman, ARF Advisor
Submitted 9 February 2004  |  Permalink Posted 9 February 2004

In this study, the authors used Affymetrix arrays to examine transcript expression in hippocampal CA1 of 31 cases, spanning the range from controls > “incipient” AD > moderate > severe AD. Each of 9,921 transcripts was correlated with NFT “scores," and/or MMSE scores. Thus, almost 20,000 correlation coefficients were computed. The false discovery rate was calculated as ~0.20. Out of the 9,921 transcripts, 3,413 were determined to be correlated with NFT and/or MMSE. Of these, 1,977 were upregulated, while 1,436 were downregulated. This finding of more upregulated transcripts is consistent with data from other array studies. However, a number of studies have found an overall decrease in transcript level in AD. These two findings can be reconciled by assuming that increased expression of upregulated genes is insufficient to overcome the decreased expression of downregulated genes. In general, many of the usual suspects were identified in the authors’ data.

A separate analysis of the “incipient” AD cases (marginal NFT and MMSE scores) yielded interesting differences between these...  Read more

  Submit a Comment on this News Article
Cast your vote and/or make a comment on this news article. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend the Primary Papers

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
ADNI Related Links
ADNI Data at LONI
ADNI Information
DIAN
Foundation for the NIH
AddNeuroMed
neuGRID
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad