Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: News
News
News Search  
In Lipid Raft, Sphingolipids Affect AβPP Processing
16 January 2004. What to use to make a good raft? This question has been debated since long before Robinson Crusoe, but if it’s lipid rafts we are talking about, you may want to shy away from using sphingolipids. A paper in press in the Journal of Biological Chemistry suggests that these lipids, in addition to cholesterol (see ARF related news story; also see Ehehalt et al., 2003 ) may play an important role in regulating intramembrane cleavage of amyloid β precursor protein (AβPP), and may lead to increased production of Aβ42.

Makoto Michikawa and colleagues at the National Institute for Longevity Sciences in Aichi-ken, Japan, in collaboration with several other Japanese labs, probed the role of sphingolipids by using myriocin, a potent inhibitor of serine palmitoyltransferase (SPT). SPT is an enzyme essential for sphingolipid biosynthesis.

When first author Naoya Sawamura added myriocin to Chinese hamster ovary (CHO) cells, he found that reducing sphingomyelin synthesis by about threefold affected cleavage of human APP, which had been transfected into the cells. Sawamura found that α cleavage was threefold higher, as determined by the amount of soluble α-secretase product (sAPPα) released by the cells. β cleavage, on the other hand, was unaffected, as was the total amount of expressed APP.

To confirm that these effects were due to changes in sphingolipid biochemistry, the authors examined cleavage of native, rodent APP in CHO cells harboring mutant, inactive forms of SPT. These cells also secreted more sAPPα, but also showed no signs of elevated β-cleavage. In addition, when Sawamura added sphingosine to these cells, or to myriocin-treated cells, the changes in APP cleavage were reversed, indicating that the drug was primarily affecting sphingolipid biochemistry.

Curiously, when the authors measured the amount of Aβ40 and Aβ42 secreted by the cells, they found that myriocin treatment increased Aβ42 release by about 1.5-fold, but had no effect on Aβ40. This suggests that γ-secretase cleavage at the 42 position may be more sensitive to fluctuations of membrane sphingolipids.

How might sphingolipids affect AβPP processing? In the simplest model, they would activate or deactivate the proteolytic secretases directly. But things may be more complex. Sawamura and colleagues found that myriocin also leads to a dramatic increase in phosphorylation of mitogen-activated protein kinase (MAPK). Furthermore, in SPT mutant cells, both elevated sAPPα and phosphorylated MAPK could be returned to normal by not only sphingosine, but also by PD98059, a potent inhibitor of MAPK kinase, or MEK. This result indicates that the effect of reduced sphingolipid on APP processing is mediated by the MAPK pathway, which itself can be activated by protein kinase C (PKC). However, the authors failed to find activation of PKC in myriocin-treated or SPT mutant cells, suggesting MAPK may be activated by a different pathway.

As for rafts, depletion of cholesterol is known to disrupt them and prevent incorporation of APP (see Kojro et al., 2001). Loss of cholesterol has also been shown to increase α cleavage, but it also decreases β cleavage (see ARF related news story). As sphingolipid loss mimics only some of these effects, indications are "that cholesterol and sphingolipids play entirely different roles in determining the properties of lipid rafts," conclude the authors.—Tom Fagan.

Reference:
Sawamura N, Ko M, Yu W, Zou K, Hanada K, Suzuki T, Gong JS, Yanagisawa K, Michikawa M. Modulation of amyloid precursor protein cleavage by cellular sphingolipids. J Biol Chem. 2004 Jan 10 [Epub ahead of print]. Abstract

 
Comments on News and Primary Papers
  Primary Papers: Modulation of amyloid precursor protein cleavage by cellular sphingolipids.

Comment by:  Andre Delacourte
Submitted 16 January 2004  |  Permalink Posted 19 January 2004
  I recommend this paper
  Submit a Comment on this News Article
Cast your vote and/or make a comment on this news article. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend the Primary Papers

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
ADNI Related Links
ADNI Data at LONI
ADNI Information
DIAN
Foundation for the NIH
AddNeuroMed
neuGRID
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad