Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: News
News
News Search  
Nicotine and β Amyloid—Smoking Guns?
20 June 2003. Papers in press in the Journal of Biological Chemistry and PNAS explore the relationship between Alzheimer's disease (AD) and nicotine.

In the June 11 JBC Papers in Press, principal author Daniel Lee and colleagues at Biogen Inc., Cambridge, Massachusetts, show that the α7-type nicotinic acetylcholine receptor (α7nAChR), the Aβ peptide, and the microtubule-associated protein tau are inextricably linked. Lee and colleagues had reported previously that Aβ has a novel action, namely, that it can bind to the α7nAChR receptor (see Wang et al., 2000). Aβ forms plaques on the extracellular spaces, whereas tau is found, in a hyperphosphorylated form, in the neurofibrillary tangles (NFT) that gum up the internal workings of affected neurons. Many researchers believe that Aβ-either its early intracellular form or once it has reentered neurons after having first been secreted-somehow induces tau phosphorylation. Now, Lee and coworkers suggest that Aβ's binding to α7nAChR mediates this proposed link.

First author H-Y Wang and colleagues used neuroblastoma cells and hippocampal synaptosomes, both rich in α7nAChR, to test what happens after Aβ binds to the nicotinic receptor. The authors show that adding Aβ1-42 to these systems results in the phosphorylation of tau at serine 202, threonine 181, and threonine 231. Significantly, these modifications are also found in NFTs. To test if this effect is directly attributable to Aβ interaction with the nicotinic receptor, the authors blocked the latter with α-bungarotoxin. In the presence of the toxin, no tau phosphorylation was observed. In addition, Aβ42-1 did not elicit any tau kinase activity, indicating that the effect was specific for native Aβ.

Several kinases have been shown to phosphorylate tau, including glycogen synthase kinase-3β, CDK5, extracellular receptor kinases (ERKs), and P38 kinase (see ARF related news story and ARF news story). Wang and coworkers used antibodies that specifically recognize active forms of these enzymes to determine if any of them mediate Aβ-induced tau phosphorylation. The only active kinases detected were ERK1 and ERK2, which became fully activated after cells or synaptosomes were incubated with Aβ1-42 for 10 minutes. In addition, when the authors incubated tau, ATP, and ERK1 or ERK2 in a test tube, they found that tau was phosphorylated on serine 202 and threonine 181, but not threonine 231.

These results may explain why Aβ induces tangle formation (see ARF related news story). They also offer an explanation for the-debated and disputed-finding that smoking slows AD progression, because nicotine and Aβ must compete for the same receptor. Such competition for the receptor may also lead to synaptic transmission defects (see ARF related live discussion).

The second connection between Aβ and nicotine comes from researchers at The Scripps Institute, La Jolla, California. In Wednesday’s PNAS Early Edition online, Tobin Dickerson and principal author Kim Janda suggest that progression of the disease may be slowed not by nicotine, but by a derivative, nornicotine.

The authors have previously reported that this metabolite can catalyze a chemical reaction between protein lysine side chains and reducing sugars, such as glucose. To test if Aβ can be so modified, Dickerson and Janda mixed the protein, glucose, and nornicotine together in a test tube, then measured the extent of Aβ modification (termed glycation) and aggregation.

The authors used sophisticated NMR measurements, including pulsed-field gradient NMR, where molecules in the sample tube are separated by size, almost like an in-situ chromatograph, to determine if nornicotine does indeed bind to Aβ. This diffusion-ordered NMR spectroscopy, or DOSY, showed two distinct populations of nornicotine, one free in solution and one protein-bound, indicating that a covalent reaction has cemented the nicotine metabolite to Aβ.

To test the significance of this, the authors used thioflavin T fluorescence to measure fibrillogenesis. Dickerson reports that in the presence of nornicotine, Aβ fibril formation is reduced by almost 20 percent. The implication is that nornicotine, which is a major nicotine metabolite in the central nervous system, may prevent aggregation of Aβ. The study included no in-vivo experiments-such as comparison of plaque number in brains of AD patients who had smoked vs. those who had not, or administration of nornicotine to AβPP-transgenic mice. In vivo, numerous other proteins compete in chemical glycation reactions.—Tom Fagan.

References:
Wang H-Y, Li W, Benedetti NJ, Lee DHS. α7 nicotinic acetylcholine receptors mediate β-amyloid peptides-induced tau protein phosphorylation. J Biol Chem. 2003 Jun 11 Abstract

Dickerson TJ, Janda KD. Glycation of the amyloid β-protein by a nicotine metabolite: a potentially fortuitous chemical dynamic between smoking and Alzheimer's disease. Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8182-7. Epub 2003 Jun 18. Abstract

 
Comments on News and Primary Papers
  Comment by:  William Glimm
Submitted 22 June 2003  |  Permalink Posted 23 June 2003
  I recommend the Primary Papers

  Comment by:  Carol Brayne
Submitted 25 June 2003  |  Permalink Posted 25 June 2003

Comment on Janda et al.
There is a great deal of interest in the role that nicotine and its metabolites might play in potential therapies for Alzheimer's disease. This study from Tobin Dickerson and Kim Janda of the Skaggs Institute of Chemical Biology looks in detail at glycation of the amyloid b protein by a nicotine metabolite. The justification for this analysis was given as the existing evidence that nicotine exposure leads to delayed onset of Alzheimer's disease, citing one paper.

This assertion needs addressing. The literature suggesting that there is a protective effect from smoking was based on animal studies and early epidemiological studies, mostly of case-control design. Case-control studies are subject to bias. Longitudinal studies are generally felt to provide a less biased result. The longitudinal studies of smoking and Alzheimer's disease have either produced no association (e.g., Doll et al., 2000), or overall increased risk (e.g.,   Read more


  Primary Papers: Glycation of the amyloid beta-protein by a nicotine metabolite: a fortuitous chemical dynamic between smoking and Alzheimer's disease.

Comment by:  Douglas Galasko
Submitted 30 June 2003  |  Permalink Posted 30 June 2003

I find these results interesting. Since I'm not an expert in Ab aggregation, I cannot comment on the experimental results, other than to say that they are very preliminary. Unfortunately, the epidemiology on smoking and AD is not uniformly in favor of it being protective, and there are many dissenting studies. In several studies, smoking increases the risk of AD (or of vascular dementia, or both).

The AD field is collecting a mounting number of negative clinical trials which were designed to test risk factors (or protective factors) noted in observational studies. NSAIDs and estrogen are two key examples. Before attempting to try nornicotine in human studies, it would be interesting to see whether the antiaggregation effect in vitro corresponds to lowering of amyloid levels and burden in transgenic mice when the compound is given chronically.

View all comments by Douglas Galasko

  Submit a Comment on this News Article
Cast your vote and/or make a comment on this news article. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend the Primary Papers

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
ADNI Related Links
ADNI Data at LONI
ADNI Information
DIAN
Foundation for the NIH
AddNeuroMed
neuGRID
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad