Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: News
News
News Search  
Aβ's Shadowy Sibling—What Becomes of the Intracellular Domain?
4 February 2003. In the January 31 online PNAS, Meir Scheinfeld, Shuji Matsuda, and Luciano D'Adamio of the Albert Einstein College of Medicine in Bronx, New York, show how the carboxyl terminus of AβPP could play a significant role in gene transcription, with implications for neurodegeneration in Alzheimer's disease.

The authors shift our attention to the "other" peptide-the AβPP intracellular domain (AICD)-which slips quietly away after γ-secretase cleaves AβPP, leaving Aβ in the harsh glare of the searchlight. The AICD peptide is less stable and more difficult to detect than its sibling, but recent investigations (beginning with Cao and Sudhof's work, ARF news story) have suggested it could play a role in transcriptional regulation (see also ARF news story; ARF news story; and ARF live discussion). There is even the suggestion from D'Adamio's group that AICD plays a role in apoptosis (Passer et al, 2000; see also related ARF discussion). In the present study, Scheinfeld and colleagues tracked the AICD peptide in its interactions with other proteins, especially the Janus kinase interacting protein (JIP-1), a scaffold protein that binds various elements of the Janus kinase (JNK) cascade. They also explore differences in the way AβPP and its relatives, AβPP-like protein-1 (APLP1) and APLP2, interact with other proteins to help regulate gene activity.

The researchers found that JIP-1 activates transcription in cultured cells transfected with the carboxyl terminus of AβPP. By contrast, other proteins (ShcA, ShcC, NCl) that bind AICD in the same region (the phosphotyrosine binding YENPTY motif) do not activate transcription with this interaction. In addition, the authors showed that individual domains of the protein were insufficient for this activity, and that full-length JIP-1 is required to activate transcription. Similarly, they used point mutations in AβPP to confirm that the gene activation can be traced to JIP-1 binding to AβPP. Scheinfeld and colleagues also confirm that AβPP must be cleaved by the PS-1/γ-secretase complex before this JIP-1-mediated transcription can occur. The activity is blocked by γ-secretase inhibitors and in cells where PS-1 activity is blocked.

Similar to JIP-1, the protein Fe65 interacts with AβPP to regulate transcription. It does this by moving into the nucleus together with AICD, and this process is regulated by the protein Tip60 (see also Rosenfeld et al., 2002). Importantly, Scheinfeld and colleagues report, JIP-1 is not translocated to the nucleus in its AICD-related transcriptional activities, nor is it dependent on Tip60.

Finally, the researchers determined that JIP-1-related transcriptional activation is something AβPP's cousins APLP-1 and APLP-2 (via their AβPP-like intracellular domains, or ALIDs) are not capable of. These data, write the authors, may help to explain why AβPP and the APLPs are apparently interchangeable for some functions (such as normal development), but not for others. "Considering that the AICD fragment is produced by processing, and its ability to induce gene activation with JIP-1 is not shared with the ALIDs, it is possible that the functional consequences of the AICD/JIP-1 interaction, including its transcription-modulating properties, may also be important in the pathology of AD," the authors conclude.-Hakon Heimer.

Reference:
Scheinfeld MH, Matsude S, D'Adamio L. JNK-interacting protein-1 promotes transcription of Abeta protein precursor but not Abeta precursor-like proteins, mechanistically different than Fe65. Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1729-34. Abstract

 
Comments on News and Primary Papers
  Comment by:  Eddie Koo, ARF Advisor
Submitted 5 February 2003  |  Permalink Posted 5 February 2003

In this paper, Scheinfeld and colleagues from the D’Adamio laboratory extended their work on the interaction between JIP-1 and APP. JIP is JNK-interacting protein-1, which several groups, including the D’Adamio lab, last year showed to bind to the cytoplasmic tail of APP. Those labs showed that JIP-1 interacted with APP and that overexpression of JIP-1 altered APP processing and metabolism (principally dealing with APP phosphorylation and secretion and Aβ release).

An area of APP biology that has taken center stage recently is the potential role in nuclear signal transduction. This idea has been too inviting by analogy to Notch signaling ever since γ-secretase was shown to cleave both APP and Notch, the latter to generate the nuclear signaling-competent NICD fragment. Evidence has been building in the last two years that the APP cognate of NICD, coined AID or AICD, indeed has signaling properties. First shown in a reporter system by Cao and Sudhof, this observation was confirmed by the finding of APP translocation into the nucleus, stabilizing of AID/AICD by Fe65, and...  Read more


  Comment by:  Tommaso Russo, ARF Advisor
Submitted 5 February 2003  |  Permalink Posted 5 February 2003

The observation that AICD and Fe65 are nuclear proteins (Minopoli et al., 2001; Kimberly et al., 2001; Cao & Sudhof, 2001; Gao & Pimplikar, 2001) and the similar proteolytic processing of APP and Notch have suggested the hypothesis that APP and its intracellular partners have some role in gene regulation. The paper of Scheinfeld et al. reports elegant data supporting this hypothesis and introducing new possible players in the scenario, namely JIP-1 and JNK. However, the exclusion of JIP-1 from the nucleus renders very unlikely the possibility that JIP-1 regulates transcription by interacting with gene promoters.

I don't think that the extensive use of the experimental approach based on Gal4-dependent transcription of a reporter gene can give enlightening results. In fact, it became evident that a huge amount...  Read more


  Primary Papers: JNK-interacting protein-1 promotes transcription of A beta protein precursor but not A beta precursor-like proteins, mechanistically different than Fe65.

Comment by:  Andre Delacourte, ARF Advisor
Submitted 13 February 2003  |  Permalink Posted 13 February 2003
  I recommend this paper

  Comment by:  Eddie Koo, ARF Advisor
Submitted 11 April 2003  |  Permalink Posted 11 April 2003

In a detailed and carefully performed study, Inomata and colleagues provide some intriguing new observations about what JIP-1b may be doing when it interacts with AβPP. Last year, several labs reported that AβPP interacts with JIP-1b, the JNK interacting scaffold protein (see Tare et al., 2002; Matsuda et al., 2002). It was never clear what this interaction meant. Now, the authors provide new data to indicate that this interaction facilitates JNK phosphorylation of AβPP, although, parenthetically, JNK does not require JIP-1b to phosphorylate AβPP. More interesting is the second observation in the study: The authors suggest that JIP-1b may be a required intermediate to bring AβPP together with kinesin light chain (KLC1). Goldstein and colleagues reported two years ago that AβPP directly interacts with kinesin light chain 1 (KLC1), and that AβPP may be the molecule that links certain axonal cargo vesicles to the kinesin machinery (see   Read more
  Submit a Comment on this News Article
Cast your vote and/or make a comment on this news article. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend the Primary Papers

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
ADNI Related Links
ADNI Data at LONI
ADNI Information
DIAN
Foundation for the NIH
AddNeuroMed
neuGRID
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad