Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: News
News
News Search  
It’s a RAP—Loss of LRP Increases Amyloid Deposition in Mice
1 November 2002. The low-density lipoprotein receptor-related protein, or LRP for short, is part of a family of receptors that mediate the uptake and destruction of extracellular molecules including apolipoprotein E. Previous in vitro experiments have shown that amyloidβ (Aβ) is a ligand for LRP, suggesting that the receptor may play a role in the dynamics of amyloid plaque formation and in the etiology of Alzheimer's disease. In today's Journal of Neuroscience, researchers in Eliezer Masliah's lab at the University of California, San Diego, report that mice deficient in the receptor have elevated deposition of Aβ and a concomitant increase in neurodegeneration.

First author Emily van Uden and colleagues generated transgenic mice that expressed human AβPP but were deficient in LRP, by crossing hAβPP mice with receptor-associated protein (RAP) knockout mice. Loss of RAP, a chaperone, has previously been shown to result in low levels of LRP and other lipoprotein receptors, and this strategy circumvents a major obstacle to analyzing LRP null mice, namely lethality.

RAP-negative offspring had 20 percent residual LRP levels while maintaining their expression of hAβPP. Their Aβ deposition was almost doubled in both the hippocampus and frontal cortex, and they also had substantially more neurodegeneration as estimated by the loss of the dendritic marker MAP2.

The results seem to support the earlier in vitro data suggesting that loss of LRP may have profound effects on Aβ movements. However, as the authors explain, RAP is also important for trafficking of other receptors, such as low density lipoprotein receptor and apolipoprotein E receptor 2. While these proteins are not affected to the same extent as LRP in the RAP null animals, they may contribute to the phenotype. It is worth noting that levels of LRP have been shown to decrease with age and that a polymorphism in the gene for the receptor has been linked to late onset AD (Kang et al., 1997).-Tom Fagan.

Reference:Van Uden E, Mallory M, Veinbergs I, Alford M, Rockenstein E, Masliah E. Increased extracellular amyloid deposition and neurodegeneration in human amyloid precursor protein transgenic mice deficient in receptor-associated protein. J. Neuroscience 2002 November 1;22:pp-pp. Abstract

 
Comments on News and Primary Papers
  Comment by:  G. William Rebeck
Submitted 2 November 2002  |  Permalink Posted 2 November 2002

Over the last 10 years, numerous studies have indicated that the low-density lipoprotein receptor-related protein (LRP) may be important for the pathogenesis of Alzheimer's disease. These include studies showing that LRP can internalize membrane-bound forms of the amyloid precursor protein and cause increased Aβ production, and studies showing LRP can internalize Aβ bound to ApoE and α2-macroglobulin, causing increased Aβ clearance. One in vivo study that has been missing is the analysis of Aβ deposition in knockout LRP mouse models of AD. This study has not been possible, since LRP knockouts are not viable. However, Van Uden et al. took the interesting approach of studying mice that have the LRP-associated protein, RAP, knocked out. RAP is important for the maturation and trafficking of LRP, and RAP knockout mice have dramatically reduced levels of LRP. Van Uden et al. analyzed Aβ deposition RAP knockout mice crossed with APP transgenic mice. There were three possible outcomes to this study: no effect on Aβ, Aβ goes down, or Aβ goes up. The first outcome would probably not be...  Read more

  Primary Papers: Increased extracellular amyloid deposition and neurodegeneration in human amyloid precursor protein transgenic mice deficient in receptor-associated protein.

Comment by:  liu qiang (Disclosure)
Submitted 22 August 2003  |  Permalink Posted 22 August 2003
  I recommend this paper
  Submit a Comment on this News Article
Cast your vote and/or make a comment on this news article. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend the Primary Papers

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
ADNI Related Links
ADNI Data at LONI
ADNI Information
DIAN
Foundation for the NIH
AddNeuroMed
neuGRID
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad