Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: News
News
News Search  
Tubulin Chaperone Found to Cause Rare Motor Neuron Degeneration, and More
28 October 2002. Crumbling microtubules, those slender filaments that aid a variety of cellular processes from cell division to vesicle trafficking, could lead to motor neuron disease. This idea is put forth in today’s online Nature Genetics by Jean-Louis Guénet of the Pasteur Institute in Paris, and colleagues at the Canary Islands University Hospital, Tenerife, Spain, and the Université de la Méditerranée, Marseille, France.

First author Natalia Martin and coworkers used polymerase chain reactions to amplify mouse genes that may harbor the progressive motor neuronopathy (pmn) mutation. Mice homozygous for this lesion rapidly lose caudiocranial motor axons and die within a few weeks of birth. Guénet et al. had previously mapped the mutation to a small region on chromosome 13, and in this latest they showed that the phenotype is the result of a single thymidine to guanine transversion, which leads to the substitution of a glycine for a tryptophan.

The transversion occurs in the very last codon of the gene for tubulin-specific chaperone e (Tbce), which is thought to play an important role in the proper folding of α-tubulin subunits, and hence in the growth of microtubules. Pmn mice, the authors show, have much less of the chaperone than wild-type animals, and the severity of the phenotype correlates with loss of microtubules. Electron microscopy in one-week-old mice shows a dramatic loss of microtubules in those animals with the most advanced symptoms.

This study suggests that a misbehaving chaperone may have disastrous consequences. A single chaperone may even wreak completely different kinds of havoc depending on which protein interactions malfunction, according to a letter from The HRD/Autosomal Recessive Kenny-Caffey Syndrome Consortium in the same issue of Nature Genetics. The consortium comprises researchers from Israel, Belgium, UK, Saudi Arabia, USA, and Kuwait. It has traced the mutations responsible for HRD (also called Sanjad-Sakati syndrome), a rare congenital form of hypoparathyroidism that leads to mental retardation, facial distortion, and growth failure, as well as mutations leading to Kenny-Caffey syndrome, which is marked by osteosclerosis and susceptibility to recurring bacterial infections. Both of these disorders have previously been mapped to chromosome 1 and seem to share a common gene.

This gene codes for the human Tbce, and phenotypes result from several different mutations, including a 12 base-pair deletion that occurred in all affected Middle Eastern patients tested and a 2 base-pair deletion accompanied by a single adenine to thymine transversion in two Belgian siblings. These mutations are predicted to result in the loss of amino acids in the α-tubulin binding domain (12 bp deletion), or premature termination of the protein at residue 48 (2 bp deletion) or 370 (transversion). While the glycine to tryptophan mutation in the pmn mice resulted in loss of Tbce due to instability, the human mutant proteins are reported to be stable when overexpressed, raising the possibility, according to the consortium, that they may retain residual activity. The latter may explain why the human phenotype, though severe, is not lethal.-Tom Fagan.

Reference:Martin N, Jaubert J, Gounon P, Salido E, Haase G, Szatanik M, Guénet J-L. A missense mutation in Tbce causes progressive motor neuronopathy in mice. Nature Genetics. 2002 October 21. Abstract

Parvari R, Hershkovitz E, Grossman N, Gorodischer R, Loeys B, Zecic A, Mortier G, Gregory S, Sharony R, Kambouris M, Sakati N, Meyer BF, Al Aqeel AI, Al Humaidan AK, Al Zanhrani F, Al Swaid A, Al Othman J, Diaz GA, Weiner R, Khan KTS, Gordon R, Gelb BD. The HRD/Autosomal Recessive Kenny-Caffey Syndrome Consortium. Mutation of TBCE causes hypoparathyroidism-retardation-dysmorphism and autosomal recessive Kenny-Caffey syndrome. Nature Genetics. 2002 October 21. Abstract

Guénet et al. Abstract

 
Comments on News and Primary Papers
  Comment by:  Tennore Ramesh
Submitted 28 October 2002  |  Permalink Posted 28 October 2002

This paper mixes well with the dynamitin paper that was published some time back. Also, its chaperone function is definitely interesting. The only other chaperones studied in ALS are HSP70 and CCS. However, no mutations in any chaperones have been identified before. The HSP70 knockout and the CCS knockout mice also showed no change in phenotype when crossed to the SOD1 mice.

View all comments by Tennore Ramesh
  Submit a Comment on this News Article
Cast your vote and/or make a comment on this news article. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend the Primary Papers

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
ADNI Related Links
ADNI Data at LONI
ADNI Information
DIAN
Foundation for the NIH
AddNeuroMed
neuGRID
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad