Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: News
News
News Search  
Society for Neuroscience Annual Meeting: The Calcium-Presenilin Connection
17 November 2000. Several presentations focused on the role of presenilins in calcium signaling pathways. Leissring and LaFerla (Abstract 474.7) reported that cells from mutant PS1 knockin mice are deficient in capacitative calcium entry (i.e., the influx of calcium triggered by depletion of intracellular calcium stores), a finding they recently reported in J Cell Biol;149: 793-798. Intriguingly, Kim, Tanzi, and colleagues (abstract 474.9) found that inhibitors of capacitative calcium entry lead to increased β-amyloid production, suggesting that this signaling pathway may regulate presenilin-mediated γ-secretase activity. In support of this regulatory link, Leissring et al. found that a tight correlation exists between the relative amount of β-secretase activity in PS1 and PS2 knockout cells and their sensitivity to agonists that stimulate release of intracellular calcium. LaFerla’s group provided evidence that presenilin mutations alter intracellular calcium levels, leading to increased calcium in the endoplasmic reticulum. This finding was nicely complemented in a nearby poster by Yang and Cook (Abstract 474.8) showing that intracellular calcium stores are, conversely, decreased in neurons from PS1 knockout animals. Finally, Sisodia (Abstract 298.5) showed evidence that a region of the presenilin molecule is homologous to potassium channels, raising tantalizing new questions about the role of presenilins in ion homeostasis. Clearly, interest in the role of presenilins in ion signaling is gaining momentum, and several interesting stories are bound to emerge in this area in the near future.-Brian J Cummings.
 
  Submit a Comment on this News Article
Cast your vote and/or make a comment on this news article. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
ADNI Related Links
ADNI Data at LONI
ADNI Information
DIAN
Foundation for the NIH
AddNeuroMed
neuGRID
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad