Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: News
News
News Search  
Aβ*56 Found in Human CSF, Correlates With Tau?
15 March 2013. Growing evidence suggests that neurons begin faltering decades in advance of cognitive symptoms in Alzheimer’s disease, but identifying the molecular culprits at play during this “invisible” phase has proven challenging. This is especially true of oligomeric forms of amyloid-β. Research reported in the March 11 JAMA Neurology proposes a step forward in the quest. Karen Ashe and colleagues at the University of Minnesota in Minneapolis, in collaboration with researchers at the University of Gothenburg in Sweden, have measured Aβ*56 in human cerebrospinal fluid (CSF). Aβ*56—convincingly to some, controversially to others, as much of the data on Aβ oligomers—is a species that reportedly wipes out memory in AD mice (see ARF related news story on Lesné et al., 2006).

In the new CSF analysis, Aβ*56 levels correlated with known CSF markers of neurodegeneration. This was the case only in cognitively normal seniors—not in people with AD or mild cognitive impairment (MCI). The findings imply that other factors elevate tau in symptomatic individuals. “This may help explain why anti-Aβ therapies have not been working in people who are symptomatic,” Ashe told Alzforum. Other scientists raised questions about the procedures used to measure the oligomers, which have been difficult to detect in human material, especially CSF.

In prior analyses with Tg2576 transgenic mice, an AD model generated in the Ashe lab, she and colleagues identified Aβ*56 as a putative 56 kDa dodecamer that correlates with cognitive impairment in this mouse strain. Aβ*56 shows up in their brains just as memory problems emerge, and levels of the oligomer track with the animal’s cognitive performance (ARF related news story on Lesné et al., 2006). Smaller Aβ species, including monomers, trimers, and hexamers, appear in Tg2576 mice prior to cognitive impairment. In this field, labs tend to stick to their own methods and protocols rather than adopt and compare each other’s for the purpose of multiple independent replication. This has so far prevented most reported oligomer species, including Aβ*56, from developing broad-based momentum.

The current paper, however, reports the first detection of Aβ*56 in human tissue. Lead author Maureen Handoko and colleagues report measuring this oligomer, as well as Aβ trimers, in the CSF of 48 cognitively impaired seniors (26 AD, 22 MCI), 49 age-matched controls with normal cognition, and 10 younger controls. The specimens came from a large, cross-sectional MCI study headed by coauthor Anders Wallin at the University of Gothenburg. One-fourth of each 1 ml CSF sample remained in Sweden, where researchers in the lab of coauthor Kaj Blennow measured CSF Aβ1-42, total tau, and phospho-tau 181 by using enzyme-linked immunosorbent assays (ELISA). The remaining 750 microliters went to the University of Minnesota, where Ashe’s group used immunoprecipitation (IP) and Western blotting to measure Aβ trimers and Aβ*56 in triplicate using 240-microliter aliquots. The Minnesota researchers were blinded to the participants’ clinical status—which the Gothenburg scientists revealed after the IP/Western data were quantitated and tabulated, Ashe said.

Among the cognitively normal volunteers, older individuals tended to have more Aβ trimers and Aβ*56 in their CSF. Moreover, Aβ*56 levels correlated with CSF tau and CSF phospho-tau levels, whereas Aβ1-42 did not. “This argues against fibrillar Aβ being coupled with tau, at least in the asymptomatic phase of disease,” Ashe said. About 10 percent of the cognitively normal older adults had an elevated CSF tau/Aβ1-42 ratio. The association was weaker in people with MCI or AD.

On a methodological level, the detection of Aβ oligomers in human CSF can be considered a feat in and of itself. Recent advances in sandwich ELISAs have enabled scientists to measure oligomers in human brain samples with high specificity, but these techniques did not detect oligomers in CSF (see ARF related news story). Ashe said her lab spent two years developing “a highly sensitive and specific immunoblot assay that can detect as little as 25-50 picograms of Aβ.” The Minneapolis group uses standard antibodies but has optimized transfer time, blocking conditions, and reagent concentrations. “All these things can drastically affect how clean your blots are,” Ashe said, noting that the detection limit for most Western blots is around 500 picograms—10 times less sensitive than her protocol. The detailed methods will appear in another manuscript, Ashe said.

The current study did not measure Aβ dimers, which some consider the most neurotoxic form of Aβ (see ARF related news story on Shankar et al., 2008; ARF news story on McDonald et al., 2010, and Villemagne et al., 2010). In unpublished work she is writing up for publication, Ashe found that Aβ dimers occur in human CSF at a ~10-fold lower concentration than Aβ trimers and Aβ*56; this ratio reverses in the brain. On her immunoblot, “you would need at least 1-2 milliliters of CSF to measure dimers,” Ashe said. Moreover, she said reliable visualization of Aβ dimers would require separate protein gels with different acrylamide concentration than those used in this study.

Some scientists were concerned about the biochemical evidence for Aβ oligomers in the present study. “It is not clear from the paper whether the detected species are Aβ rather than an APP fragment,” wrote David Brody of Washington University School of Medicine, St. Louis, Missouri, in an e-mail to Alzforum (see full comment below). He noted that levels of soluble APP in the CSF have been shown to be ~100-fold higher than Aβ (Nitsch et al., 1995). The paper reports the IP/Western blot data as densitometry light units; it does not show original blots. Some of the blots will appear in another paper currently in press in Brain.

The study does not control for the possibility that the IP/Western procedure itself could induce artifactual aggregation of Aβ, Brody noted. In a recent study (Esparza et al., 2013), he and colleagues found that monomeric Aβ can aggregate at high local concentrations, such as those occurring after immunoprecipitation. SDS, a detergent the researchers used to prepare samples for Westerns, can also induce Aβ aggregation (see Watt et al., 2013). Ashe acknowledges the potential for detergents such as SDS to trigger anomalous formation of oligomers. However, “if you do an immunoprecipitation from CSF, that eliminates this possibility because there is no detergent in CSF,” she said. On the concern about mistakenly detecting APP fragments, she said her lab has several lines of unpublished evidence indicating that they are, in fact, measuring Aβ. For example, when the researchers ran undiluted CSF on a size exclusion chromatography (SEC) column, Aβ*56 and Aβ monomers showed up in separate fractions on SDS-PAGE. Furthermore, they see no signal on Western blots probed with APP antibodies that recognize epitopes outside the Aβ region. “I’m very convinced that what we’re looking at is Aβ,” Ashe said.—Esther Landhuis.

Reference:
Handoko M, Grant M, Kuskowski M, Zahs KR, Wallin A, Blennow K, Ashe KH. Correlation of Specific Amyloid-β Oligomers With Tau in Cerebrospinal Fluid From Cognitively Normal Older Adults. JAMA Neurol. 11 March 2013. Abstract

 
Comments on News and Primary Papers
  Primary Papers: Correlation of Specific Amyloid-β Oligomers With Tau in Cerebrospinal Fluid From Cognitively Normal Older Adults.

Comment by:  David Brody
Submitted 15 March 2013  |  Permalink Posted 15 March 2013

The topic is important, and the results are intriguing.

The issue of Aβ oligomerization is a complex one, and several methodological questions could be raised:

1. The immunoprecipitation with 6E10 and Western blotting with 6E10 may not distinguish between Aβ and soluble APP fragments. It is not clear from the paper whether the detected species are Aβ rather than an APP fragment. Of note, the levels of soluble APP in the CSF are about 100-fold higher than Aβ (see Nitsch et al., 1995, Table 2), so even a minor APP fragment would give a lot of signal in the 6E10-based assay.

2. It will be important to control for the possibility that the immunoprecipitation and Western blotting assay procedures themselves induce artifactual aggregation of Aβ (see Esparza et al., 2013, Fig. 2 L). Monomeric Aβ can aggregate at high local concentrations, such as those that occur after immunoprecipitation.

3. Additional controls of interest regarding the assay include test-retest reproducibility, dilutional linearity, and spike-recovery linearity.

4. A future direction could...  Read more


  Primary Papers: Correlation of Specific Amyloid-β Oligomers With Tau in Cerebrospinal Fluid From Cognitively Normal Older Adults.

Comment by:  Sylvain Lesne
Submitted 15 March 2013  |  Permalink Posted 15 March 2013

The measurements of CSF oligomeric Aβ were done by immunoprecipitation/Western blot using as little as 240 μL per determination (ran as triplicate, then averaged). Using such a low volume suggests it may be possible to integrate similar measurements in longitudinal studies. It is disappointing that CSF levels of Aβ dimers could not be determined due to the experimental design (the acrylamide content in the gel cannot resolve small species). Concentrations of Aβ1-42 and tau/pt181-tau were determined by ELISA, as it is traditionally done for biomarker studies.

Both oligomeric Aβ species (Aβ*56 and Aβ trimers) detected in the CSF correlated with tau/ptau concentrations in aged, unimpaired subjects, while presumably monomeric Aβ1-42 did not. By extrapolation, it could indicate that the elevation of trimer-based Aβ oligomers seen in aging and AD is linked to abnormal tau changes. This interpretation is consistent with the notion that Aβ*56 and Aβ trimers may initiate the disease process during the latent phase of AD (i.e., preclinical AD).

In impaired individuals (including...  Read more


  Primary Papers: Correlation of Specific Amyloid-β Oligomers With Tau in Cerebrospinal Fluid From Cognitively Normal Older Adults.

Comment by:  P. Hemachandra Reddy
Submitted 18 March 2013  |  Permalink Posted 19 March 2013
  I recommend this paper

  Primary Papers: Correlation of Specific Amyloid-β Oligomers With Tau in Cerebrospinal Fluid From Cognitively Normal Older Adults.

Comment by:  Anne Fagan, ARF Advisor
Submitted 19 March 2013  |  Permalink Posted 19 March 2013

Development of valid and quantitative assays for oligomeric Aβ species is considered by many to be the Holy Grail in the AD fluid biomarker field. Such assays are technologically challenging for many reasons. Several groups have reported such assays, but establishing an assay’s validity has been problematic, and none has stood the test of time. Dr. Ashe’s group has been interested in oligomeric Aβ species for several years, reporting in 2006 the presence of the Aβ*56 form in Tg2576 mice and its memory-disrupting ability when injected into rats. In this current paper, they report the presence of Aβ trimers as well as the Aβ*56 species in human CSF samples using a combined immunoprecipitation and immunoblotting procedure. Although the assay appears not to be quantitative (instead, semi-quantitative), the reported percent coefficient of variation among triplicates was good (  Read more

  Comment by:  Kathleen Zahs
Submitted 3 April 2013  |  Permalink Posted 8 April 2013

It is our hope that the publication of our JAMA Neurology paper and the accompanying Alzforum story will motivate other laboratories to study Aβ*56. We certainly recognize that the existence of this species as an authentic oligomer that occurs in vivo is controversial. Perhaps, though, the following considerations will encourage skeptics and believers alike to take a closer look at Aβ*56.

The existence of specific Aβ oligomers as real entities, rather than artifacts, has been questioned because of the possibility that they are artificially generated through exposure to detergents, such as SDS. Several lines of evidence argue against this possibility.

1. When proteins in undiluted CSF are first separated by size-exclusion chromatography (SEC) and then analyzed by Western blot, Aβ*56 and Aβ monomers are seen in separate fractions eluted from the SEC column. If Aβ*56 was artifactually generated from monomers during the process of gel electrophoresis, one would expect to see both of these species in the same fractions from the SEC column.

2. Using the same extraction...  Read more

  Submit a Comment on this News Article
Cast your vote and/or make a comment on this news article. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend the Primary Papers

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
ADNI Related Links
ADNI Data at LONI
ADNI Information
DIAN
Foundation for the NIH
AddNeuroMed
neuGRID
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad