Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: News
News
News Search  
Suspects for Aβ Generation Spotted Together, En Route to Nerve Terminal
11 December 2001. In last Friday's Nature, Lawrence Goldstein of the University of California, San Diego, further advanced his claim that the amyloid-β precursor protein (AβPP) mediates fast, anterograde axonal transport by binding to the motor protein kinesin-1. The present study extends findings in Drosophila reported last month (see related news item) in that it appears to have identified a vesicle-like membrane compartment in mouse axons that contains AβPP, BACE, and presenilin-1, along with some other cargo proteins destined for the nerve terminal. The paper also provides some data to indicate that Aβ can be generated from these traveling vesicles.

The paper addresses several open questions in Alzheimer's research. First, the normal function(s) of AβPP remain unknown, though knockout mice point to synaptic defects, gliosis, and neuromuscular damage (Zheng et al. 1995, Dawson et al. 1999). Second, it remains unclear where in the neuron Aβ is generated in vivo. Previous studies point to the endoplasmic reticulum, pre-Golgi and trans-Golgi compartment, or endosomes, but most were done in cell lines and few have been able to colocalize the substrate and two enzymes needed for Aβ generation.

In this study, Adeela Kamal et al. tried to make their point with several different sets of experiments. First, they compared levels of kinesin-1, AβPP, and its presumed cargo in sciatic nerves and corpus callosum from normal and AβPP knockout mice. Knockout mice had reduced levels of kinesin-1, Bace, Ps-1 in both peripheral and central nerve tracts. Also reduced were levels of the axonal protein Gap43, the synaptic marker synapsin-1, and the neurotrophin receptor TrkA, which may be additional cargo in vesicles transported via the APP-kinesin link, the authors suggest. The levels of these proteins were increased in dorsal root ganglia of AβbPP knockout mice, possibly reflecting grounded proteins that need AβPP for transport. The control proteins synaptotagmin and synaptophysin, which are transported by a different motor, were unaffected by the AβPP loss.

The authors then tied the sciatic nerve of wildtype and AβPP knockout mice and showed that kinesin-1, Bace, PS-1, synapsin-1, Gap-43, and TrkA markedly accumulated over time on the proximal side of the ligation in wildtype mice but did so less in AβPP-deficient mice. Immunofluorescence of the ligated nerves showed colocalized, overlapping staining of APP, BACE, and Ps-1.

Fractionation of sciatic nerve yielded an AβPP-, BACE-, and Ps-1-containing fraction that looked like vesicles in the electron microscope. Immunoprecipitation with APP-, kinesin-, or TrkA antibodies brought down a fraction containing kinesin-1, AβPP, BACE, and PS-1, but not synpathophysin, synaptotagmin, or ER markers. Next, the scientists fractionated mouse cortex and found two pools of kinesin-1, AβPP, BACE, and PS-1; one pool contained ER and Golgi markers but the other did not. Immunoprecipitation again brought down the same group of proteins.

Next, the authors studied whether these axonal membrane vesicles generate Ab. Using immunoblotting, they detected Aβ40 and 42 in sciatic nerve axon vesicle fractions, and found that both peptides accumulate in the proximal side of ligated sciatic nerves of control mice. The also observed an Aβ40 and 42 increase over six hours in sciatic nerve segments that were ligated in two places to exclude the possibility that Aβ have been made in the cell body and shipped down the axon. When warmed to 37 degrees, even the isolated membrane fractions generated some Aβ over six hours' time.

Finally, the authors wondered whether Aβ generation affected transport in some way. When extracting proteins from sciatic nerves double-ligated for six hours, they found increased soluble kinesin-1 and a soluble fragment that is probably the APP C-terminus, indicating that γ-secretase cleavage of AβPP in the axonal membrane vesicles releases its C-terminus and causes kinesin to detach from the vesicle.

"Our data confirm a role for AβPP as a kinesin-1 membrane receptor needed for BACE and Ps-1 transport in an axonal membrane compartment," the authors write, adding that any role for AβPP processing in normal transport remains speculative. One physiological role could be that AβPP cleavage ends kinesin-1 transport once the vesicle has arrived at the nerve terminal. An underlying disease process or axon damage could also trigger AβPP processing. The released C terminus could, in turn, transmit an injury signal to the cell body and initiate neuroprotective gene transcription, the authors speculate, (see related news item.)-Gabrielle Strobel.

Reference:Kamal A et al. Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin-1 requires APP. Nature. 2001 Dec 6;414(6864):643-8. Abstract

 
Comments on News and Primary Papers
  Comment by:  Yong Shen
Submitted 11 December 2001  |  Permalink Posted 11 December 2001

This careful study rigorously tests a creative concept. We have also detected BACE and APP, though not PS-1, in the same subcellular compartment in AD neurons. That APP, BACE and PS1 are colocalized at the same subcellular site in axons is intriguing and helpful to explain some important issues, but the axonal membrane compartment may not be only major site for Aβ generation (we found one or two sites in AD neurons). While sciatic nerve is a simple, good model to test this working hypothesis, it is also important to keep in mind that sciative nerve nerve cells differ from neurons in the brain, especially cortical or hippocampal neurons. The authors use corpus callosum as an axonal model, however, hippocampal or enthorinal cortex neurons may also be worth pursuing. They all contain neuronal cell bodies and their axonal projections and are pathologically affected areas in AD. This is a very good paper.

View all comments by Yong Shen

  Comment by:  Benjamin Wolozin, ARF Advisor (Disclosure)
Submitted 11 December 2001  |  Permalink Posted 11 December 2001

Despite intensive study the functions of APP are unknown, however an increasing number of experiments are identifying functions of APP. This paper is interesting because it identifies a function that appears to be dependent on APP which, if true, would be a major function of APP and further the understanding of its basic biology.

View all comments by Benjamin Wolozin

  Primary Papers: Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin-1 requires APP.

Comment by:  Benjamin Wolozin, ARF Advisor (Disclosure)
Permalink
  I recommend this paper

Despite intensive study the functions of APP are unknown, however an increasing number of experiments are identifying functions of APP. This paper is interesting because it identifies a function that appears to be dependent on APP which, if true, would be a major function of APP and further the understanding of its basic biology." - Benjamin Wolozin.

View all comments by Benjamin Wolozin

  Primary Papers: Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin-1 requires APP.

Comment by:  shen chengyong
Submitted 31 August 2004  |  Permalink Posted 1 September 2004
  I recommend this paper

This paper provided us with a new function mechanism of APP, which may give us some clues as to how to decrease amyloid peptide while not disturbing the normal function of.

View all comments by shen chengyong
  Submit a Comment on this News Article
Cast your vote and/or make a comment on this news article. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend the Primary Papers

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
ADNI Related Links
ADNI Data at LONI
ADNI Information
DIAN
Foundation for the NIH
AddNeuroMed
neuGRID
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad