Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: News
News
News Search  
Stockpiling Endocannabinoids Protects Mice Against AD-Like Symptoms
12 November 2012. It may not provide quite the same high, but boosting the brain’s natural supply of cannabinoids prevents cognitive decline in mice that model Alzheimer’s disease, new research shows. The treatment—a compound that prevents breakdown of endocannabinoids into neurotoxic fatty acid derivatives—also staved off neuroinflammation, cell loss, and buildup of brain amyloid in the mice. Reported online November 1 in Cell Reports by Chu Chen, Louisiana State University, New Orleans, and colleagues, the study suggests that pharmacological modulation of lipid pathways could hold promise for AD. However, further work is needed to clarify the molecular mechanisms responsible for the benefits.

Chu and others have shown that the endocannabinoid 2-arachidonoylglycerol (2-AG) protects brain neurons from inflammation and Aβ-induced cell death (see Zhang and Chen, 2008; Chen et al., 2011). Breakdown of 2-AG generates arachidonic acid, the precursor to prostaglandins and leukotrienes that mediate neuroinflammation. Other recent work identified monoacylglycerol lipase (MAGL) as the primary enzyme that converts 2-AG into arachidonic acid (Nomura et al., 2011). “Our strategy was to block this enzyme (in AD mice) to increase the neuroprotective and anti-inflammatory effects of endogenous 2-AG,” Chen told Alzforum.

First author Rongqing Chen and colleagues treated 5xFAD mice, an aggressive AD amyloid model, with the MAGL inhibitor JZL184. Developed by scientists at Scripps Research Institute in La Jolla, California, the compound shrank tumor growth in cultured human cancer cells (Nomura et al., 2010) and suppressed neuroinflammation and cell loss in a parkinsonian mouse model. In the current study, Chen’s team injected the MAGL inhibitor into the peritoneum of presymptomatic 5xFAD mice three times a week under a 16-week prevention regimen starting at two months, or an eight-week treatment starting at four months of age. In this AD strain, brain deposits start appearing at two months, plaques form by four months, and cognitive deficits show up between five and six months of age. By immunoblotting and immunohistochemistry, both treatment groups had less brain Aβ (total and Aβ42) than did vehicle-treated controls. Brain levels of BACE1, the enzyme that initiates cleavage of Aβ from amyloid precursor protein (APP), were also down. Fewer neurons were dying in these animals relative to controls, as shown in brain slices stained with the FluoroJade C neurodegenerative marker.

To examine effects on spine density, the scientists crossed 5xFAD mice with a transgenic line expressing neuron-specific green fluorescent protein (GFP). Two-photon imaging of hippocampal CA1 and dentate granule neurons revealed lower spine density in the AD/GFP mice—largely preventable by eight-week JZL184 treatment, the scientists report. AD mice downregulate glutamate AMPA and NMDA receptor subunits; again, the MAGL inhibitor prevented these deficits.

The compound also delivered functional benefits, alleviating problems with neurotransmission and long-term potentiation that ravage the hippocampal CA1 region of AD mice. More importantly, both eight- and 16-week treatments prevented memory deterioration as measured in the Morris water maze.

Interestingly, the MAGL inhibitor boosted cognition and increased spine density even in normal mice. That jibes with a recent study showing enhanced spatial learning and memory in MAGL knockout mice (Pan et al., 2009).

Scientists contacted for comment on this study agreed that the mouse data look promising, but said more work is needed to flesh out molecular details before considering the compound for human testing. Blocking MAGL will likely affect many downstream pathways. “You’re going to take out good pathways and bad pathways at once,” said Katrin Andreasson of Stanford University School of Medicine, Palo Alto, California. “I think you need to get downstream of MAGL to identify which are the toxic prostaglandin signaling pathways. Then you can design more specific approaches with fewer side effects.”

Tibor Harkany of Karolinska Institute, Stockholm, Sweden, expressed concern about side effects. “If you consider that MAGL inhibition would increase brain endocannabinoid levels six- to sevenfold (as per the data from this paper), and endocannabinoids affect synaptic neurotransmission globally, then one unresolved question is whether MAGL inhibition would exert undesired effects on many higher cognitive functions and/or make people drowsy or affect their motor coordination,” Harkany noted in an e-mail to Alzforum. “The cost-benefit relationship of using MAGL inhibitors must carefully be weighed, and in more sophisticated models, before increasing hope for a new treatment.” Persistent cannabis use, for example, is associated with neuropsychological decline (see Meier et al., 2012).

Grace Sun of the University of Missouri, Columbia, extended the specificity argument in the other direction. She suggested that MAGL inhibition may be insufficient for mopping up the pool of arachidonic acid (AA) that gets broken down into harmful prostaglandins and leukotrienes. Since release of arachidonic acid (AA) “can be mediated by other enzymes, including phospholipases, which are probably more abundant than MAGL, it is not clear how this enzyme is linked specifically to AA-derived prostaglandins in the AD brain,” she suggested.

On the whole, the present paper offers proof of principle that lipid cascades can be pharmaceutically targeted, said Steffany Bennett of the University of Ottawa, Canada. She said the new work supports the idea that tweaking lipid pathways “to promote a ‘normal biology’ may represent a new frontier for AD research.” (See full comment below.)

On the neuroinflammation angle, human data paint a confusing picture. Past clinical trials of non-steroidal anti-inflammatory drugs (NSAIDs) showed no benefit in people with mild to moderate AD (see ARF related news story) or in at-risk seniors on the verge of dementia (see ARF related news story). However, observational studies have suggested that NSAIDs do protect against AD (see Vlad et al., 2008), leading scientists to hold out hope that hitting neuroinflammatory pathways might work as a preventive therapy. Furthermore, Andreasson noted, MAGL inhibitors are different from NSAIDs because “they are a one-two punch.” In addition to diminishing downstream prostaglandin effects, they boost 2-AG.

Chen and colleagues are beginning to unravel the molecular underpinnings behind the synaptic and cognitive improvement tied to MAGL inhibition. The scientists reported that 2-AG may protect neurons via PPAR-γ (Du et al., 2011), and they have National Institutes of Health funding to extend preliminary findings suggesting that epigenetic mechanisms such as noncoding microRNAs are involved in the neuroprotection.

Enhancing 2-AG signaling may eventually turn out to be helpful for other brain disorders as well. In a recent study, treatment with another MAGL inhibitor normalized synaptic defects and corrected behavioral abnormalities in a mouse model of fragile X syndrome, the most common genetic cause of autism (Jung et al., 2012).—Esther Landhuis.

Reference:
Chen R, Zhang J, Wu Y, Wang D, Feng G, Tang YP, Teng Z, Chen C. Monoacylglycerol Lipase is a Therapeutic Target for Alzheimer’s Disease. Cell Reports. 31 Oct 2012;2:1-11. Abstract

 
Comments on News and Primary Papers
  Comment by:  Grace Sun
Submitted 12 November 2012  |  Permalink Posted 12 November 2012

This paper provides convincing data that inhibition of monoacylglycerol lipase by JZL184 can prevent neuroinflammation and improve synaptic plasticity and memory in AD mice. The authors used a number of innovative techniques. However, since arachidonic acid (AA) release can be mediated by other enzymes, including phospholipases, which are probably more abundant than the monoacylglycerol lipase, it is not clear how this enzyme is linked specifically to AA-derived prostaglandins in the AD brain. It is possible that, besides being an inhibitor of the lipase, JZL184 may have anti-inflammatory and antioxidative properties. Also, it may be good to consider a possible link between endocannabinoids and AD.

View all comments by Grace Sun

  Comment by:  Steffany Bennett
Submitted 12 November 2012  |  Permalink Posted 12 November 2012

The importance of this paper lies in the proof of principle that lipid cascades can be pharmaceutically targeted. Neurolipidomic studies to date have identified multiple key lipid metabolic pathways that appear to act as determinants of AD pathology, yet the million-dollar question has always been, How can specific metabolic pathways be targeted without massive systemic imbalance? Chen et al. show, perhaps for the first time, that pharmaceutical intervention into lipid metabolism indeed alters disease progression, at least in rapid-onset mouse models of AD. Excitingly, the far-reaching effects in this model of MAGL inhibition support Herrup's hypothesis (2010) that a defining "change of state," envisioned as a systemic metabolic change that accelerates cognitive decline, in part, by rendering neurons susceptible to the synaptotoxic and neurotoxic effects of Aβ, may be one of aberrant lipid metabolism. It will be important to understand the impact of MAGL inhibition on multiple pathways and on combination therapy. Clinical trials of early lipid modulators have not met with...  Read more
  Submit a Comment on this News Article
Cast your vote and/or make a comment on this news article. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend the Primary Papers

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
ADNI Related Links
ADNI Data at LONI
ADNI Information
DIAN
Foundation for the NIH
AddNeuroMed
neuGRID
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad