Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: News
News
News Search  
Vicious Cycle? Aβ Triggers Cell Stress, Generating More Aβ
10 September 2012. Cellular stress has been implicated in many neurodegenerative diseases, but little is known about how its pathways interact with pathology. Now, in the September 6 Neuron, researchers led by Sung Yoon and Kun Huang at The Ohio State University, Columbus, report that Aβ oligomers can activate metabolic stress pathways by blocking protein translation. The increased stress turns on a kinase involved in cell death, JNK3, which then acts to ramp up production of Aβ, the authors report. This harmful feedback loop might make JNK3 a therapeutic target, Yoon proposed. “Our data strongly suggest a positive feed-forward mechanism that is perpetuated by JNK3, so if we halt it in some manner, maybe we could significantly lower [Aβ levels],” she told Alzforum.

Cellular stressors, such as hoards of misfolded proteins, trigger the unfolded protein response (UPR), a coping mechanism that switches on early in conditions such as amyotrophic lateral sclerosis, Parkinson’s disease, and Alzheimer’s disease (see ARF related news story). As part of this response, cells activate JNK (see Urano et al., 2000). Previous work by Yoon and others showed that the brain-specific isoform JNK3 mediates neuronal death in Parkinson’s disease (see Hunot et al., 2004) and Huntington’s disease (see ARF related news story), as well as the death of neurons and oligodendrocytes after brain injury (see Beffert et al., 2006; Li et al., 2007). “The new study is thorough and presents compelling evidence that Aβ can play a role in activating JNK3,” said Uwe Beffert, Boston University, Massachusetts. Beffert has collaborated with Yoon in the past but was not involved in the current research.

The route from Aβ to the kinase is an indirect one, however. Yoon and colleagues first showed that the peptides suppress the translational machinery that synthesizes proteins from messenger RNA. In rat hippocampal neuron cultures treated overnight with synthetic Aβ42 peptides (5 μM), protein synthesis dropped by about half. The authors traced the mechanism to the activation of AMP-activated protein kinase α (AMPKα), which is known to block initiation of translation (see Gwinn et al., 2008; Inoki et al., 2003). Because translation sputters, it kicks off the unfolded protein response and activation of JNK3, the authors report. How Aβ might activate AMPKα is not clear, but the authors speculate the peptide may pump up calcium levels, thereby activating CaMK, which can phosphorylate AMPKα. Intriguingly, Aβ has been shown to flood cells with calcium from internal stores, triggering the UPR (see ARF related news story).

What form of Aβ is responsible for blocking translation? Western blots of the peptide solution showed that most of it was monomeric, with about 5 percent being small oligomers, mostly dimers and trimers, the authors report. Control experiments showed that fibrillar and pure monomeric Aβ did not activate AMPKα, implying that oligomers were the active species in these experiments. Their concentration in the mixture was about 250 nM, which is higher than some estimates of physiological concentrations of Aβ42 in AD brains. The field has grappled with the issue of what is the physiologically relevant form and concentration of Aβ (see ARF Webinar).

Yoon and colleagues then turned to in-vivo studies. They crossed 5xFAD transgenic mice with JNK3 knockout mice, and saw dramatic improvements in pathology. At one year old, the 5xFAD/JNK3 knockouts accumulated about one-quarter the amount of insoluble Aβ in multiple brain regions as did their JNK3-positive cousins. Fewer cortical neurons died in the absence of JNK3 than in transgenic controls, although still more than in wild-type animals. Memory in a fear paradigm approached wild-type levels in the crosses. This suggests a role for JNK3 in promoting AD-like pathology and neuronal damage in mice.

The authors also examined where JNK3 is expressed and what it does in 5xFAD transgenics. Immunohistochemistry showed that phosphorylated JNK3 loiters near amyloid plaques and dystrophic neurites in 5x mice, Tg2576 mice, and aged monkeys. They found that at six months of age, JNK3 is about 25 percent more active in transgenics than in wild-type mice, an increase similar to what is seen in human postmortem AD brains. Both findings jibe with previous reports that JNK3 switches on in damaged neurites (see, e.g., Muresan and Muresan, 2005; Cavalli et al., 2005), and places the kinase in a relevant location to play a role in AD.

Finally, the authors linked the kinase to altered processing of amyloid precursor protein (APP). In cell culture experiments, JNK3 phosphorylated APP at position T668, as shown previously by other groups. Treating cultures with JNK activators rapidly increased APP at the cell surface, followed by a gradual reuptake that cut the amount of surface-bound APP in half within 30 minutes. This implied to the authors that JNK3 facilitates the internalization of APP. Since amyloidogenic processing is believed to occur largely in endosomal compartments, this would pump up Aβ levels, the authors note. Mutation of the T668 phosphorylation site, or treatment with a JNK inhibitor, prevented the response.

JNK3-negative 5xFAD mice displayed less phosphorylated APP at the cell membrane than normal 5x animals, but had normal APP phosphorylation in whole-cell lysates. The authors suggest that JNK3 preferentially affects membrane-bound APP. However, Beffert noted that the change in phosphorylated APP is small, and questioned whether it could lead to the large changes seen in insoluble Aβ levels. JNK3 may be acting on other substrates that affect amyloid processing as well, he suggested.

Yoon believes that JNK3 could make a therapeutic target. She plans to test inhibitors in several strains of AD mice to see if they lower Aβ levels and improve symptoms, particularly when given late in the disease course.—Madolyn Bowman Rogers.

Reference:
Yoon SO, Park DJ, Ryu JC, Ozer HG, Tep C, Shin YJ, Lim TH, Pastorino L, Kunwar AJ, Walton JC, Nagahara AH, Lu KP, Nelson RJ, Tuszynski MH, Huang K. JNK3 perpetuates metabolic stress induced by Aβ peptides. Neuron. 2012 Sep 6;75(5):824-37. Abstract

 
Comments on News and Primary Papers
  Primary Papers: JNK3 perpetuates metabolic stress induced by Aβ peptides.

Comment by:  Virgil Muresan, Zoia Muresan
Submitted 14 September 2012  |  Permalink Posted 14 September 2012

The mechanisms that lead to the pathology of Alzheimer’s disease (AD) are not completely understood. However, numerous hypotheses have been proposed to explain the main pathological features characteristic for the AD brain—among these, the increased production and accumulation of toxic amyloid-β (Aβ) species. Some of these hypotheses appear to hold when tested in cell culture, in animal models of AD, as well as when confronted with the real AD brain.

In their recent study, Yoon et al. came up with just such a hypothesis. They identify a pathway that could explain how an initial accumulation of oligomeric Aβ—probably caused by random fluctuations in the cell metabolism—could trigger a self-amplifying loop that produces and accumulates more toxic Aβ species. Briefly, the authors propose that the trigger of this pathway is a block of translation caused by an initial increase in extracellular Aβ oligomers. This is a stress, sensed by one of the neuron’s stress centers, the endoplasmic reticulum (ER), which unleashes a typical unfolded protein response (UPR) that activates the...  Read more


  Primary Papers: JNK3 perpetuates metabolic stress induced by Aβ peptides.

Comment by:  Claudia Pereira
Submitted 19 September 2012  |  Permalink Posted 19 September 2012

Under diverse stress conditions, such as a perturbed calcium homeostasis, the normal function of the endoplasmic reticulum (ER) is impaired, leading to a phenomenon known as ER stress. To reestablish homeostasis and normal ER function, mammalian cells evolved a coordinated response of protein signaling pathways and transcription factors termed the unfolded protein response (UPR). This adaptive response initiates ER-to-nucleus signaling cascades that involve the transcriptional upregulation of genes that increase the ER folding capacity, protein quality control, and degradation of terminally misfolded proteins. In addition, the influx of newly synthesized proteins into the ER is reduced through induction of general translational arrest. This reduction in the global rate of translation is one of the earliest events in the UPR, and it was reported to inhibit long-term potentiation and memory acquisition. Accordingly, recent observations suggest that deregulation of the UPR, or chronic ER stress, is a fundamental pathological event in many neurodegenerative disorders, such as...  Read more
  Submit a Comment on this News Article
Cast your vote and/or make a comment on this news article. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend the Primary Papers

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
ADNI Related Links
ADNI Data at LONI
ADNI Information
DIAN
Foundation for the NIH
AddNeuroMed
neuGRID
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad