Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: News
News
News Search  
ALS-Linked Ataxin Repeats Stick It to TDP-43 in Stressed Cells
11 July 2012. Having a few excess polyglutamine codons—but not a lot—in the gene ataxin-2 predisposes a person to amyotrophic lateral sclerosis, and scientists are just starting to figure out how. In the July 4 Journal of Neuroscience, Michael Hart of the University of Pennsylvania in Philadelphia and Aaron Gitler, now at Stanford University in Palo Alto, California, report that those intermediate-length polyQ repeats ramp up caspase activity and make a toxic turncoat out of the ALS protein TDP-43, at least in cell culture. Accumulation of activated caspase-3 appears to be a hallmark of the disease when ataxin repeats contribute to the pathology, the scientists found in autopsy tissue samples.

Researchers in Gitler’s laboratory previously discovered that carrying between 27 and 33 glutamine codons in the ataxin-2 gene is a risk factor for ALS (see ARF related news story on Elden et al., 2010). Most people have 22 or 23 repeats. Curiously, having more than 34 repeats causes a higher likelihood not of ALS, but of another disease, spinocerebellar ataxia.

Ataxin-2 protein associates with TDP-43 in stress granules. These are transient protein accumulations that cells create in times of trouble. Stress granules have been repeatedly linked to ALS (see ARF Webinar; Liu-Yesucevitz et al., 2010). Pathogenic TDP-43 in cytoplasmic stress granules tends to be both fragmented and phosphorylated. Hart and Gitler had a hunch that the extra repeats might enhance the ataxin-2-TDP-43 interaction, effectively imprisoning TDP-43 in stress granules and promoting disease.

Hart tested the hypothesis in three cell types: the HEK293T human embryonic kidney line, lymphoblasts from people with ALS, and differentiated BE(2)-M17 human neuroblastoma cells. The lymphoblasts included samples from people with ALS who had either normal or intermediate-length expansions, as well as one person with spinocerebellar ataxia due to 40 repeats. In the case of the cell lines, Hart transfected them with ataxin-2 toting 22, 31, or 39 repeats.

Simply adding ataxin-2, of any repeat size, did not affect TDP-43. To stress the cells and to force TDP-43 out of its normal nuclear location into cytoplasmic stress granules, Hart heated the cultures to 42 degrees Celsius for one hour. Then he immunoblotted with an antibody specific for phosphorylated TDP-43. Heat shock drove up the amount of phosphorylated, insoluble protein, which was present as a fragment of approximately 30 kilodaltons. The intermediate-length repeats approximately doubled the concentration of this pathogenic TDP-43, compared to ataxin-2 with longer or shorter repeat sequences.

Since only fragmented TDP-43 was phosphorylated, Hart suspected that the cleavage would precede, and might even promote, the phosphate acquisition. Other researchers have shown that caspase-3 cleaves TDP-43 (see ARF related news story on Zhang et al., 2007), and indeed caspase activation is a normal function of short-repeat ataxin-2 (Wiedemeyer et al., 2003). This led Hart to examine his immunoblots with antibodies specific to activated caspases.

The cells with intermediate-length ataxin repeats turned on caspase-3; cells expressing longer or shorter versions did not. It appears that the medium-length repeats somehow lower the cell’s threshold for stress, making it prone to activate caspase and place TDP-43 in stress granules. Treating the cells with a caspase inhibitor diminished accumulation of phosphorylated TDP-43 fragments—suggesting that caspase activation occurs upstream of the TDP-43 aggregation.

Finally, Hart examined spinal cord sections from eight people who died of ALS. Specifically in the samples from four people with intermediate ataxin expansions, he observed cytoplasmic inclusions of activated caspase-3 in the motor neurons. “We think this is a new feature of ALS pathology that is specific to cases of ALS that harbor ataxin-2 expansions,” Gitler concluded.

The paper supports the current hypothesis that accumulated TDP-43 fragments cause disease, and offers a pathological pathway specific to people with the ataxin-2 risk factor, said Randal Tibbetts of the University of Wisconsin, Madison, who was not involved in the paper. In people without the expansions, other genetic or environmental factors, such as TDP-43 mutations, could lead to the same “common endpoint” of TDP-43 pathology, he suggested.

Subduing the caspase might treat ALS, Gitler suggested. Unfortunately, caspase inhibitors have fared poorly in ALS trials (Gordon et al., 2007). Perhaps the therapy would be effective for the subpopulation of people with ataxin expansions, Gitler speculated. Alternatively, Tibbetts suggested, scientists might try to alter the pathway between ataxin-2 repeats and caspase activation, but researchers still have to work out that chain of events.

How can just a few excess amino acids make such a striking difference in ataxin’s activity? The simplest explanation is that they alter the protein’s conformation, suggested Leonard Petrucelli of the Mayo Clinic in Jacksonville, Florida, who was not involved in the study. The expansion might cause a form of toxic gain of function, allowing ataxin to interact differently with normal partners or even recruit new binding partners. For his part, Gitler suspects that the intermediate repeats enhance some normal function of ataxin, such as its caspase-activating ability, while the long repeats that cause spinocerebellar ataxia create a new, poisonous property.—Amber Dance.

Reference:
Hart MP, Gitler AD. ALS-associated ataxin-2 polyQ expansions enhance stress-induced caspase-3 activation and increase TDP-43 pathological modifications. J Neurosci. 2012 Jul 4;32(27):9133-42. Abstract

 
Comments on News and Primary Papers
  Primary Papers: ALS-associated ataxin 2 polyQ expansions enhance stress-induced caspase 3 activation and increase TDP-43 pathological modifications.

Comment by:  Steven Finkbeiner
Submitted 11 July 2012  |  Permalink Posted 11 July 2012

I think the overall idea is quite interesting. In a nutshell, it is that TDP-43 normally shuttles between the nucleus and the cytoplasm. Under stress, it moves temporarily to the cytoplasm to form stress granules to help cells cope with the stress. Versions of ataxin-2 with polyQ expansions that are longer than normal but not long enough to cause spinocerebellar ataxia enable it to cooperate with TDP-43 and cause neurodegeneration. Both proteins are involved in stress granule formation, which would be the logical place for an interaction that might cause synergistic toxicity. But there also seems to be a role for activation of caspase-3, which can cleave TDP-43, and presumably promote cell death. The biology is interesting in part because only intermediate polyQ lengths seem to confer these properties—normal polyQ stretches or ones that cause SCA2 don't work.

Whereas the amount of ALS explained by this biology is probably small, it does give us additional insights into how TDP-43 might work and lead to neurodegeneration. Since TDP-43 pathology is found in a number of...  Read more

  Submit a Comment on this News Article
Cast your vote and/or make a comment on this news article. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend the Primary Papers

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
ADNI Related Links
ADNI Data at LONI
ADNI Information
DIAN
Foundation for the NIH
AddNeuroMed
neuGRID
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad