Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: News
News
News Search  
Research Brief: Assessing Aβ Oligomers Toxicity in Live Mice

8 June 2012. This, that, and the other form of Aβ have shown themselves harmful to neurons in various settings, but debate continues to rage over which are most menacing in Alzheimer's disease. A paper in this week's Journal of Neuroscience describes a way to determine relative toxicities of Aβ species in vivo. Developed by Luc Buée of INSERM and the University of Lille, France, and colleagues, the approach involves repeated hippocampal injections of synthetic Abta oligomers into freely moving mice—causing tau hyperphosphorylation, neuron loss, and memory deficits. While the authors say their method provides an in vivo readout for evaluating Aβ preparations and potential therapeutics, other scientists for now remain unconvinced of the pathophysiological relevance of the model.

Small, soluble Aβ oligomers—ranging in size from dimers to dodecamers—have been fingered as key drivers of neurotoxicity (Lambert et al., 1998; Lesné et al., 2006; Shankar et al., 2008; Ono et al., 2009). "We wanted to find a way to test all these Aβ oligomers in a controlled animal model," Buée told Alzforum (see also Benilova et al., 2012 review). Analyzing transgenic mice is tricky because "you don’t know which oligomers you will have," he said. Injecting Aβ into the mouse brain is another approach, but past research suggests that anesthesia alone sends phospho-tau levels soaring (ARF news story on Planel et al., 2007).

With these issues in mind, first author Jonathan Brouillette and colleagues set about injecting Aβ into awake, mobile mice. They prepared synthetic Aβ oligomers using a protocol from co-author Bart De Strooper’s lab at the University of Leuven, Belgium (Kuperstein et al., 2010), and injected them through surgically implanted tubes into the hippocampal dentate gyrus of 12-month-old B6 females once a day for six days. The injected material was primarily low-molecular-weight Aβ42 of less than 30 kDa—including monomers, dimers, trimers, and tetramers—as revealed by Aβ immunoblotting (6E10 and 3D6), and by transmission electron microscopy, atomic force microscopy, plus various spectroscopy methods.

Analyzed 24 hours later, the mouse brain showed Aβ oligomers crowding the injection site. It also showed extensive neuron loss, reduced levels of the NMDA receptor subunit NR2B, and elevated levels of cleaved caspase-3. Controls injected with vehicle solution and scrambled Aβ appeared normal. In addition, tau phosphorylation levels rose in the brains of Aβ-injected mice, though only at the S202/T205 site and not at other sites typically affected in AD. If the Aβ oligomers were pre-incubated with the sequestering agent transthyretin (TTR) prior to injection, the mice were spared neuron loss and memory deficits. Previous work suggested TTR protects against AD pathology in transgenic mice (see ARF news story on Buxbaum et al., 2008).

"With this model, we can test which forms of Aβ are most toxic," Buée said, noting it should also be useful for testing therapeutic approaches.

Other scientists wondered how well the data reported to date apply to AD. "The relevance of synthetic Aβ to the disease state is questionable," John Cirrito of Washington University School of Medicine, St. Louis, Missouri, wrote in an email to Alzforum (see full comment below). "It would be interesting to see what naturally derived Aβ oligomers would do in this chronic infusion system."

Moreover, the study used non-physiologic concentrations of Aβ; specifically, an amount that would reach micromolar concentrations if the injected oligomers distributed uniformly throughout one side of the forebrain, according to Karen Ashe and colleagues at the University of Minnesota, Minneapolis (see full comment below). "In comparison, Aβ dimers isolated from AD brains are cytotoxic at sub-nanomolar concentrations (Jin et al., 2011)." The authors used high Aβ concentrations to induce toxic oligomer conformations, and said that doing so accelerates processes that would otherwise take decades—too slow to permit laboratory studies. "Such high Aβ concentrations might actually be quite relevant for what happens in vivo," countered co-author Iryna Benilova of the University of Leuven. "It is suggested that Aβ can concentrate in intracellular compartments, thus creating the conditions for local formation of potentially toxic aggregates." (Hu et al., 2009)

The study did not address the possibility that the oligomers could have formed larger or smaller aggregates after injection. "I would be curious to know whether the Aβ oligomers that wind up in the hippocampus, and can be seen immunohistochemically, go on to become fibrillar (by electron microscopy)," said Lary Walker of Emory University in Atlanta, Georgia. The study did not test if other oligomers besides Aβ could have caused the neuron loss and memory symptoms.

Despite reservations expressed by some researchers, "we believe the authors should be lauded for their careful characterization of the Aβ species present in their preparations before injection and, impressively, the Aβ species actually present in the brain after injection," wrote Hsiao and colleagues.—Esther Landhuis.

Reference:
Brouillette J, Caillierez R, Zommer N, Alves-Pires C, Benilova I, Blum D, De Strooper B, Buée L. Neurotoxicity and Memory Deficits Induced by Soluble Low-Molecular-Weight Amyloid-beta1-42 Oligomers Are Revealed In Vivo by Using a Novel Animal Model. J Neurosci. 6 June 2012;32(23):7852-7861. Abstract

 
Comments on News and Primary Papers
  Primary Papers: Neurotoxicity and memory deficits induced by soluble low-molecular-weight amyloid-β1-42 oligomers are revealed in vivo by using a novel animal model.

Comment by:  Sylvain Lesne
Submitted 8 June 2012  |  Permalink Posted 9 June 2012

This is an interesting study from Luc Buée’s and Bart De Strooper’s groups reporting the effects of synthetic Aβ1-42 oligomers (prepared as mentioned by Kuperstein et al., 2010, another study from Dr. De Strooper) on neuronal loss and cognitive function using a model of chronic injection in vivo. In this work, the authors report that the repeated daily injection over 6 days of apparent synthetic low-molecular weight Aβ oligomers (LMW oAβ) leads to neuronal toxicity as evidenced by FluoroJade staining, increased detection of active caspase-3 immunoreactivity, and decrease levels of GluN2B. In parallel, murine tau is hyperphosphorylated at S202/T205 while other sites traditionally affected in the human disease are not. Importantly, mice that received injections of LMW oAβ displayed apparent cognitive deficits in the passive avoidance memory task and in the Y-maze. The study is nicely complemented with applications of the same Aβ mixture onto primary mouse neurons to show that the same abnormal changes observed...  Read more


  Primary Papers: Neurotoxicity and memory deficits induced by soluble low-molecular-weight amyloid-β1-42 oligomers are revealed in vivo by using a novel animal model.

Comment by:  John Cirrito
Submitted 8 June 2012  |  Permalink Posted 9 June 2012

Brouillette and colleagues have developed a system where they can inject synthetic Aβ oligomers into mouse brain, then detect toxicity and accumulation of the exogenous Aβ. There are several instances in the literature of synthetic Aβ being more toxic and less stable than naturally-derived Aβ oligomers. Consequently, the relevance of synthetic Aβ to the disease state is questionable. It would be interesting to see what naturally-derived Aβ oligomers would do in this chronic infusion system. A growing literature has found naturally-derived Aβ usually alters synaptic plasticity but rarely suggests that these Aβ oligomers are toxic. That would seem to contradict this report. The repeated infusion of Aβ oligomers into brain, as used here, is an important advance; however, I have strong doubts about the relevance of what is being infused.

An open question within the AD field is, when are Aβ oligomers present in the brain? Are oligomers physiologic or only pathophysiologic? To answer those questions we will likely need animal models that endogenously express Aβ. Or even better...  Read more


  Primary Papers: Neurotoxicity and memory deficits induced by soluble low-molecular-weight amyloid-β1-42 oligomers are revealed in vivo by using a novel animal model.

Comment by:  Karen Hsiao Ashe, Peng Liu, Kathleen Zahs
Submitted 8 June 2012  |  Permalink Posted 9 June 2012

Buée, De Strooper and colleagues have presented a novel mouse model in which to study Aβ toxicity in vivo. Six daily injections of synthetic Aβ oligomers into the dentate gyrus of normal adult mice led to transient tau hyperphosphorylation and pronounced local neurodegeneration. This observation contrasts with observations in multiple lines of APP transgenic mice, in which very little or no neuron loss is seen. Why this new model differs so drastically from transgenic models of Aβ toxicity is an important question, and bears on the relevance of the animal models to the human disease.

First, the Buée study employed very high concentrations of Aβ, in an effort to accelerate pathogenesis. (If the injected Aβ distributed uniformly throughout one side of the forebrain, we estimate that it would reach micromolar concentrations; in comparison, Aβ dimers isolated from AD brains are cytotoxic at sub-nanomolar concentrations (Jin, M., et al., 2011) It is not at all certain that such a rapid response to a high concentration of a toxin is equivalent to the response to chronic...  Read more


  Primary Papers: Neurotoxicity and memory deficits induced by soluble low-molecular-weight amyloid-β1-42 oligomers are revealed in vivo by using a novel animal model.

Comment by:  Joel Buxbaum
Submitted 12 June 2012  |  Permalink Posted 12 June 2012

Some of the authors' observations are not surprising, from our view, since they performed an in-vitro incubation of Aβ oligomers with transthyretin (TTR), and we (and others) have shown that such an incubation will inhibit Aβ fibril formation, oligomer formation, and oligomer-induced cytotoxicity in tissue culture (see Buxbaum et al., 2008, and Li et al., 2011). In essence, the authors are doing an in-vitro inhibition of aggregation measured with an in-vivo neuronal readout. This is similar to Dominic Walsh’s oligomer inhibition of LTP in hippocampal slices.

Technically, I might mention that the authors have no controls for TTR or Aβ. Do the oligomers form larger or smaller aggregates after injection? Would putting β2 macroglobulin or islet amyloid polypeptide oligomers into the dentate gyrus do the same thing? Would any TTR inhibit the damage or would another protein thought to “chaperone” Aβ have the same effect? The authors could have used clusterin or a TTR that does not have...  Read more


  Comment by:  Suhail Rasool
Submitted 12 June 2012  |  Permalink Posted 14 June 2012
  I recommend the Primary Papers

This is a fascinating study from Luc Buée’s and Bart De Strooper’s groups reporting the effects of Aβ oligomers on neuronal loss and reduction levels of the NMDA receptor subunit NR2B, and elevated levels of cleaved caspase-3. This observation contrasts with other observations previously reported in various transgenic mouse models of AD, in which very little or no neuron loss is seen. The most important questions in this report are, What type or size of Aβ oligomers (ranging in size from dimers to dodecamers) causes neuronal loss, and does the degree of neuronal loss vary? Have the authors investigated the role of Aβ40 oligomers on neuronal loss in this particular mouse model? Finally, how relevant is this mouse model to the human disease?

View all comments by Suhail Rasool

  Comment by:  Jonathan Brouillette
Submitted 18 June 2012  |  Permalink Posted 19 June 2012

Many advantages can be attributed to this novel, flexible in-vivo approach:
  • The nature of toxic Aβ intermediates can be more accurately controlled by injecting Aβ preparations that are characterized before and after chronic injection, as we did in our paper (Fig. 1 and Fig. 2D).
  • Since the intrahippocampal injections are done in awake, freely moving mice, there are no confounding interference effects between any anesthetic agents and the Aβ solution on intracellular pathways.
  • To take into account aging—the most robust risk factor associated with AD—the effects of soluble Aβ1-42 oligomers were determined during the process of aging in 12-month-old mice. Chronic Aβ1-42 injections can also be done in younger and older mice to see their effects at different ages.
  • The collateral injection of soluble Aβ1-42 oligomers and vehicles permitted the control of any alteration within the same mouse.
  • Since Aβ accumulates in a time-dependent manner, the number of injections and the dose of Aβ can be adjusted to obtain more or less severe readouts of Aβ...  Read more
  Submit a Comment on this News Article
Cast your vote and/or make a comment on this news article. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend the Primary Papers

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
ADNI Related Links
ADNI Data at LONI
ADNI Information
DIAN
Foundation for the NIH
AddNeuroMed
neuGRID
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad