Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: News
News
News Search  
Deep-Brain Stimulation Improves Connectivity in AD
11 May 2012. Deep-brain stimulation (DBS) has become widely used for the treatment of Parkinson's disease, and researchers are now hoping to use it for other diseases, including Alzheimer's (AD). Two years ago, researchers led by Andres Lozano, University of Toronto, Ontario, Canada, claimed that DBS of the fornix area heightened glucose metabolism and caused possible cognitive benefits in a small pilot study of AD. A separate analysis of the same data, published in the May 7 Neuron, suggests that that DBS improved functional connectivity, too, and that the surgery may exert the greatest cognitive benefit in those in the earliest stages of AD.

"The study is an exciting advancement in the development of a treatment for the cognitive and neuropsychiatric symptoms of AD," wrote Michele York, Baylor College of Medicine, Houston, Texas, to ARF in an e-mail. However, it is still in its early days, cautioned York, who was not involved in this study. "This avenue of research will require a large, well-controlled, and thoroughly described investigation ... prior to it being offered as a therapeutic intervention."

In 2010, Lozano's group implanted electrodes near the fornix—the fiber bundle that connects the hippocampus and hypothalamus—in six patients diagnosed with AD. After one year of stimulation with the electrodes, positron emission tomography scans using the radiotracer [18F]-2-deoxy-2-fluoro-D-glucose (FDG-PET) indicated that certain brain structures used more glucose at rest than they had before, meaning those regions were consuming more sugar and being more active (see ARF related news story on Laxton et al., 2010). In typical AD patients, glucose metabolism falls as the disease progresses, so this hinted at some improvement. Hippocampal volume also declined more slowly than expected in AD, or even grew a bit, as presented at the Society for Neuroscience meeting in 2011. A manuscript on those results is in preparation, said Smith.

In the current paper, first author Gwenn Smith, Johns Hopkins University, Baltimore, Maryland, and colleagues reanalyzed the FDG-PET data for five of those patients (one of the six was tested on a different scanner and was excluded from these analyses). The authors first looked for a correlation between baseline glucose use, improvement in glucose metabolism, and cognitive scores. All patients showed revved-up glucose metabolism after one year of DBS, but metabolism perked up more in those who started the study with the highest initial glucose use. These same high-baseline individuals either raised their scores on the Alzheimer’s Disease Assessment Scale-cognitive subscale (ADAS-cog), or at least declined less than expected in AD. This means that baseline glucose use might eventually predict the benefits of DBS, the authors wrote.

"That suggests the circuits you are targeting need to be in pretty good shape to be sustained; if they're already broken, DBS is not going to mend them," said Paul Frankland, University of Toronto, who was not involved with this study. In previous collaboration with Lozano, Frankland reported that spatial memory improved after DBS stimulation of the entorhinal cortex in wild-type mice (see ARF related news story). Another paper suggested that DBS applied in the fornix region overcomes memory impairment in rats (see Hescham et al., 2012), and Frankland will soon publish results that suggest similar benefits of DBS in AD mouse models.

The researchers further report that the structures with heightened glucose metabolism comprised two separate neural networks that showed strengthened functional connectivity. One was a frontal-temporal-parietal-striatal-thalamic network, the other a frontal-temporal-parietal-occipital-hippocampal network. Their glucose use rose simultaneously. "This shows a contrast with what we know about the course of Alzheimer's disease," said Smith. Previous studies have reported that functional connectivity breaks down over the course of AD (see ARF related news story on Sperling et al., 2009; Allen et al., 2007, and Damoiseaux et al., 2012). What mechanisms might underlie the apparent benefit of DBS? Candidates include neurogenesis and heightened neurotransmitter or neurotrophic factor release, the authors wrote. Future molecular imaging studies could be used to determine which is responsible.

Smith and her coauthors acknowledge that this is a tiny sample of patients without placebo controls. They are planning more rigorous clinical trials for people in early stages of AD. "In Alzheimer's, we are so anxious to find treatments that work," she said. "We want to be very careful. Before making any claims about using DBS on a larger scale or how effective it is, we really need to see more data." Other recent studies have suggested that reducing the brain's activity with pharmacologic agents may be a treatment for patients diagnosed with mild cognitive impairment (see ARF related news story and ARF news story). In Smith's, view, the two ideas are not at odds with each other, since each is targeting a different stage of the disease—hyperactivity in MCI and hypoactivity in AD.—Gwyneth Dickey Zakaib.

References:
Smith GS, Laxton AW, Tang-Wai DF, McAndrews MP, Diaconescu AO, Workman CI, Lozano AM. Increased Cerebral Metabolism After 1 Year of Deep-Brain Stimulation in Alzheimer Disease. Arch Neurol. 2012 May 7. Abstract

 
Comments on News and Primary Papers
  Primary Papers: Increased Cerebral Metabolism After 1 Year of Deep Brain Stimulation in Alzheimer Disease.

Comment by:  Michele York
Submitted 11 May 2012  |  Permalink Posted 11 May 2012

Dr. Lozano’s study demonstrating increased cerebral glucose metabolism one year following deep-brain stimulation for Alzheimer’s disease is an exciting advancement in the development of a treatment for the cognitive and neuropsychiatric symptoms of AD. The findings of a relationship between improvements in outcome (although minor) and increased metabolism strengthens the researchers' argument that a larger study is needed to further evaluate the efficacy of this intervention. It should be noted that in this very small sample, the patients were younger and less cognitively impaired than the majority of AD patients seen in clinical populations. However, as a proof-of-concept and tolerability study, these findings provide the impetus needed for further investigation. This avenue of research will require a large, well-controlled, and thoroughly described investigation with both short- and long-term safety and efficacy outcomes in a sample that can be generalized to a wider AD population prior to it being offered as a therapeutic intervention.

View all comments by Michele York

  Primary Papers: Increased Cerebral Metabolism After 1 Year of Deep Brain Stimulation in Alzheimer Disease.

Comment by:  Katja Hardenacke, Jens Kuhn
Submitted 24 May 2012  |  Permalink Posted 24 May 2012

Since the end of the 1980s, deep-brain stimulation (DBS) has substantially expanded the therapeutically possibilities of treating Parkinson’s disease (1). DBS refers to a complex neuromodulative procedure, which implies the stereotactical implantation of two electrodes into defined target structures of the brain. The success story told by DBS in the field of movement disorders, the minimally invasive surgery and the rare and usually very minor side effects, suggest that the ambitions of applying DBS to other neurological and psychiatric indications will be more quickly fulfilled in the future (2). And indeed, in the last three years two groups (3-6) (see also http://clinicaltrials.gov/ct2/show/NCT01094145) employed DBS has been used with the aim of improving cognitive abilities in patients with dementia.

Despite many years of experience with DBS, the therapeutic mechanisms are not yet completely understood. There are various actions being discussed, since, on the neuronal level, excitatory and...  Read more

  Submit a Comment on this News Article
Cast your vote and/or make a comment on this news article. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend the Primary Papers

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
ADNI Related Links
ADNI Data at LONI
ADNI Information
DIAN
Foundation for the NIH
AddNeuroMed
neuGRID
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad