Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: News
News
News Search  
Functional Connectivity Predicts Aβ Deposition in Mice
29 March 2012. In the human brain, functional connectivity is intimately linked with amyloid-β pathology. Brain areas that communicate during the long hours the brain spends at rest—the default-mode network—become the most burdened by Aβ plaques, and connectivity is, in turn, disrupted with amyloid load. Functional imaging in mice now shows a similar trend. David Holtzman and colleagues from Washington University, St. Louis, Missouri, report that communication between connected areas takes a nosedive in aged AD mouse models, and areas that show the strongest connectivity in young transgenic mice accumulate the most amyloid plaques later on. These findings are published in the March 28 Journal of Neuroscience.

"The finding will give human imaging researchers more confidence in this AD mouse model studied here," said William Seeley, University of California, San Francisco, who was not involved in the work. Researchers may soon use this and other animal models to investigate more than just amyloid deposition, he added. "Having a controllable model system enables one to map out the sequence of pathological events: When, for example, does functional connectivity begin to change in the natural history of amyloid aggregation?" (Seeley will discuss the brain networks' role in the spread of misfolded proteins on 10 April 2012 in an Alzforum Webinar; see the Alzforum homepage to read the spotlight for the Webinar.)

In humans, weakening of the default-mode network (DMN) correlates with plaque deposition early in the course of Alzheimer's disease (ARF related news story on Greicius et al., 2004). The DMN also suffers more amyloid plaque than other brain areas (see ARF related news story). Aβ released by high levels of synaptic activity may be to blame for the DMN's high plaque load (see ARF related news story). Last year, Holtzman's lab reported that, in transgenic mice, greater synaptic activity in certain brain areas (analogous to the DMN in humans) early in life predicts more plaque accumulation in those areas when the animals age (see ARF related news story). The group wondered if connectivity would be disrupted in these areas in older animals as well. In the current study, Holtzman's team used a newly developed technique to test if resting functional connectivity declines in aged and plaque-laden mice.

Joint first authors Adam Bero (now at MIT) and Adam Bauer looked at brain function in both three- and 11.5-month-old APP/PS1 mice. Age-matched wild-type mice served as controls. The researchers chose functional connectivity optical intrinsic signal imaging, or fcOIS, to measure brain activity. Reflecting visible light off the brains of anesthetized mice (through their naturally translucent skulls) reveals local concentrations of hemoglobin. This allows researchers to measure oxygen being delivered to and consumed by active neurons (see White et al., 2011). The researchers focused fcOIS on right and left frontal, motor, somatosensory, cingulate, retrosplenial, and visual cortices. They mapped oxygen use over time, measuring how activity in each area tracked with its contralateral cortex to determine connectivity. After fcOIS was complete, the researchers located areas of Aβ plaque deposition by removing mouse brains and staining slices with the anti-Aβ antibody, HJ3.4.

According to maps of the older transgenic mice, connectivity (relative to the young transgenic mice) weakened between frontal, motor, cingulate, and retrosplenial hemispheres, but not the visual and somatosensory cortices. "There was a significant and strong decline in connectivity that paralleled the amount of amyloid deposition," Holtzman told Alzforum. In older wild-type mice, similar reductions only showed up in the retrosplenial cortex (the human equivalent of the posterior cingulate cortex), suggesting to the authors that normal aging comes with a slight decline in functional connectivity, which is exacerbated by Aβ deposition. The more plaque deposited, the greater the decline in functional connectivity. The most drastic effects showed up in the retrosplenial cortex.

In addition, the strength of the functional connectivity in the young transgenic mice predicted where Aβ would deposit later. In the younger mice, frontal, motor, cingulate, and retrosplenial cortices were strongly correlated with contralateral counterparts, and lateron Aβ plaques deposited heavily in these regions, more so than in the visual and somatosensory cortices. "The amount of connectivity in a brain region strongly predicts how much plaque is going to develop there," said Holtzman. This parallels previous findings in humans (see ARF related news story). "The implication is that fcOIS will be important for translating animal to human studies," he said. In addition to looking at functional connectivity in other models of neurodegeneration, the group next plans to determine whether ApoE genotype might play a role in this measure.

As in any study with anesthetized animals, some caution is warranted in interpreting the functional results, because anesthesia could produce slight functional changes in these mice, said Alexander Drzezga, Technische Universität München, Germany. Nevertheless, combined with amyloid imaging in mice with PIB, which his lab just demonstrated (see ARF related news story), this functional technique could one day help researchers get more out of mouse model studies. "Having an option to look at these kinds of pathological parameters in a longitudinal way is a perfect approach to establish causal interactions between pathologies," said Drzezga. "You could never do this in cross-sectional studies."—Gwyneth Dickey Zakaib.

Reference:
Bero AW, Bauer AQ, Stewart FR, White BR, Cirrito JR, Raichle ME, Culver JP, Holtzman DM. Bidirectional Relationship between Functional Connectivity and Amyloid-β Deposition in Mouse Brain. J Neurosci 2012 March 28; 32(13):4334-4340. Abstract

 
Comments on News and Primary Papers
  Comment by:  William Jagust
Submitted 29 March 2012  |  Permalink Posted 29 March 2012

This is another very interesting paper from David Holtzman's lab, continuing a very interesting theme that suggests neural function (or dysfunction, in this case) affects Aβ deposition. Previous work (a nice paper by in Nature Neuroscience last year, Bero et al., 2011) showed that neural activity was related to subsequent development of plaques in transgenic animals. This paper breaks new ground by applying a method this lab developed that uses optical imaging to measure functional connectivity. It's motivated by studies in humans with fMRI that show disruption of functional connectivity in normal older people with Aβ deposition. In this case, through the use of transgenic animals, the authors were able to demonstrate regional loss of connectivity in young animals, prior to Aβ deposition.

This is quite a novel finding, and extends the theme that the lab has been working on relating neural activity to Aβ to include measures of functional connectivity. The functional connectivity measures in this paper are especially interesting...  Read more

  Submit a Comment on this News Article
Cast your vote and/or make a comment on this news article. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend the Primary Papers

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
ADNI Related Links
ADNI Data at LONI
ADNI Information
DIAN
Foundation for the NIH
AddNeuroMed
neuGRID
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad