Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: News
News
News Search  
Vast Yet Tiny? Charting the New World of microRNAs
25 October 2001. Entire new classes of molecules don't come along every day, so it is worth noting that the classic triumvirate of RNA-mRNA, tRNA, rRNA-has just gotten a baby brother. Three independent research teams are reporting in tomorrow's Science the discovery of almost 100 different microRNAs in three species and homologs in organisms as diverse as the worm Caenorhabditis elegans, its cousin C. briggsae, zebrafish, the fruit fly, mice, cows, and humans.

Researchers led by Thomas Tuschl of the Max Planck Institute for Biophysical Chemistry in Goettingen, Germany, by David Bartel at the Whitehead Institute in Cambridge, Massachusetts, and Rosalind Lee and Victor Ambros at Dartmouth Medical School in New Hampshire, used a range of biochemical and bioinformatics methods to prospect for tiny RNAs about 22 nucleotides long. (Typical protein-coding mRNAs range from 1,000 to 10,000 nucleotides.)

Until recently, only two such RNAs, lin-4 and let-7 of C. elegans, were known. Hundreds more may be discovered, the scientists write. "Tiny RNA genes may be the biological equivalent of dark matter, all around us but almost escaping detection," writes Gary Ruvkun of Massachusetts General Hospital in an accompanying Perspective article.

The big question is what microRNAs, miRNAs for short, are doing. Lin-4 and let-7 are providing clues. First discovered in the Ambros (Lee et al., 1993) and Ruvkun labs (Reinhart et al. 2000), respectively, these miRNAs regulate gene expression in the nematode embryo. They bind to the 3'untranslated region of particular target mRNAs, which represses further translation of those mRNAs and thus nudges the embryo into the next developmental stage.

The newly discovered microRNAs show great diversity. Some are expressed only during certain developmental stages, others in particular tissues (one, for example, is expressed specifically in human heart), while still others are uniformly expressed. Together with other data, this suggests that microRNAs may prove to be an important class of fast and potent "riboregulators" that direct the post-transcriptional control of genes, the authors write. Such knowledge could become useful in efforts to program the differentiation of stem cells for tissue repair, they add.

In the brain, microRNAs could function in synaptic plasticity, Ruvkun writes. The mRNA for Cam Kinase II, an enzyme implicated in postsynaptic signaling after a synapse has fired, localizes to dendrites and dendritic spines of the postsynaptic neuron (Mayford et al, 1996). Its 3'untranslated region has been sequenced (Mori et al., 2000), and Ruvkun speculates that a miRNA complementary to this sequence might be involved in controlling translation of this kinase.-Gabrielle Strobel.

References:
Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001 Oct 26;294(5543):853-8. Abstract

Lau NC, Lim LP, Weinstein EG, Bartel DP. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 2001 October 26;(294):858-862. Abstract

Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science 2001 October 26;(294):862-864. Abstract

Ruvkun G. Molecular biology. Glimpses of a tiny RNA world. Science 2001 Oct 26;294(5543):797-9. Abstract

Related News Story

 
  Submit a Comment on this News Article
Cast your vote and/or make a comment on this news article. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend the Primary Papers

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
ADNI Related Links
ADNI Data at LONI
ADNI Information
DIAN
Foundation for the NIH
AddNeuroMed
neuGRID
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad