Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: News
News
News Search  
Neurodegeneration and Aging: Could MicroRNA Be the Link?
17 February 2012. Aging is one of the biggest risk factors for neurodegenerative disease, but the biological link between the two processes is unclear. Enter miR-34—a tiny piece of RNA of 21 to 24 nucleotides long. A microRNA, miR-34 binds to certain messenger RNAs (mRNA) and prevents their translation into protein. Knocking out the gene for miR-34 in fruit flies resulted in both a shortened lifespan and accelerated brain degeneration, reported Nancy Bonini and colleagues at the University of Pennsylvania, Philadelphia, in a paper published in the February 16 Nature. On the other hand, boosting miR-34 expression protected against neurodegeneration in a fly model of polyglutamine expansion disease and lengthened lifespan in wild-type flies. "This gives a discrete link between the process of aging and the process of neurodegenerative disease," said Peter Nelson, University of Kentucky, Lexington, who was not involved in the study.

To study miRNAs, first author Nan Liu and colleagues mutated the loquacious gene, rendering flies unable to properly process the small oligonucleotides. These animals died earlier than wild-type, and had striking brain deterioration, leading the authors to surmise that perhaps one or more miRNAs were responsible. The team pored over the miRNAs expressed in the aging fly brain and noticed that while most either showed steady expression or decreased with age, miR-34 expression increased as flies got older.

Next, Liu and colleagues generated miR-34 knockouts. Compared to controls, these flies had dramatically accelerated brain deterioration marked by large brain vacuoles, and died early. At just 20 days of age, the flies had trouble climbing and were much more sensitive to stress than were age-matched controls. The researchers partially rescued these deficits by restoring limited miR-34 expression; bumping up miR-34 expression in wild-type flies also increased survival by about 10 percent. The 20-day-old knockout flies expressed a range of genes typically activated in older animals.

"This is the first case, outside of worms, where somebody has knocked out a microRNA and shown that the animal has a lifespan defect," said Frank Slack, Yale University, New Haven, Connecticut, who did not participate in the research. Slack's lab previously reported that miR-34 ramps up with age in C. elegans, and that knocking it out shortens lifespan (see de Lencastre et al., 2010), while upregulation of lin-4, another C. elegans miRNA, extends the worm's lifespan (see Boehm and Slack, 2005).

However, for Liu and colleagues the question remained, What harmful mRNAs does miR-34 target to slow aging and neurodegeneration? Using computer algorithms, the researchers predicted that the mRNA for the gene Eip74EF, a component of steroid hormone signaling pathways, would bind miR-34. The gene encodes two protein forms, but Northern blot tests showed that only one isoform of E74A was present in adults, so the scientists focused on that. Despite strong E74A mRNA expression in the adult fly heads, miR-34 kept protein translation quiet. In flies without miR-34, however, E74A protein ran amok and flies aged faster. Adding miR-34 back to the genome rescued the premature demise. Flies engineered to express additional Eip74EF at high temperatures also showed neurodegeneration and a shorter lifespan when raised at 29 degrees Celsius. In contrast, fruit flies with a partial loss-of-function E74A mutation aged more normally in the absence of miR-34. The authors concluded that Eip74EF, which is critical during fruit fly development, has negative effects on the adult fly, and that miR-34 mitigates those. However, Eip74EF is just one of a potential pool of targets for miR-34, note the authors.

"Further understanding of mir-34 and its targets may provide key mechanistic insight into how age-related events are linked to integrity of the brain," said Bonini. She said her team plans to look for more of miR-34's targets and seek other microRNAs that are differentially expressed with age. There are three isoforms (a to c) of 21, 22, and 24 nucleotides in length, and it is not clear if they have independent or redundant effect.

In addition to accelerated aging and neurodegeneration, fruit flies lacking miR-34 also showed an increase in protein misfolding, as evident by inclusions that immunostained for stress chaperones. The team used transgenes to boost the amount of miR-34 in flies that expressed ataxin-3 with a polyglutamine (polyQ) expansion. This mutation is responsible for one form of spinocerebellar ataxia (see ARF related news story and ARF news story). These flies had fewer inclusions, more soluble polyQ, and less neural degeneration, although the E74A gene seemed uninvolved in this process.

MiR-34 is conserved across species. Roundworms, fruit flies, mice, and humans all have it. In fact, it is one of only 14 microRNAs known to be so highly conserved, said Martin Bushell, University of Leicester, U.K. Does miR-34 influence human aging and neurodegeneration? It abounds in the hippocampi of mouse models of Alzheimer's disease (AD) and people with AD, and inhibiting one of its isoforms—miR-34c—rescues memory deficits in APPPS1-21 and aged wild-type mice (see ARF related news story on Zovoilis et al., 2011). MiR-34 appears to be pleiotropic; for example, it prevents cell division. For that reason, tissue-specific delivery will be key if it is ever to be used therapeutically, noted Bushell. "That's the major hurdle to overcome," he said. "You might get off-target effects in tissue where upregulation of miR-34 is bad." A number of labs and pharmaceutical companies are working on this problem now, he added.—Gwyneth Dickey Zakaib.

Reference:
Liu N, Landreh M, Cao K, Abe M, Hendriks GJ, Kennerdell JR, Zhu Y, Wang LS, Bonini NM. The microRNA miR-34 modulates ageing and neurodegeneration in Drosophila. Nature. 2012 Feb 15. Abstract

 
Comments on News and Primary Papers
  Comment by:  Maria Björkqvist, Philip Gaughwin
Submitted 17 February 2012  |  Permalink Posted 17 February 2012

The study by Liu et al. indicates that microRNAs function as powerful regulators of post-transcriptional gene regulation in the adult and aging brain. The paper neatly demonstrates that when several newly identified targets of miR-34 escape regulation, late-onset brain degeneration ensues. Using the Drosophila fly as a model system, the authors could demonstrate that flies lacking miR-34 were born with no obvious defects; however, with aging these flies developed motoric dysfunction and brain degeneration.

These interesting and timely observations build on a recent body of evidence that implicates microRNAs as important molecular components of a healthy aging process.

This paper has identified some exciting and novel targets of miR-34 regulation that may be conserved. However, the targets of individual microRNAs can number in the hundreds to thousands. Indeed, this paper has identified E74A-dependent and E74A-independent pathways to disease in the absence of miR-34.

Drosophila flies expressing a polyQ disease protein (ataxin-3 polyglutamine) exhibit...  Read more


  Primary Papers: The microRNA miR-34 modulates ageing and neurodegeneration in Drosophila.

Comment by:  Sebastien S. Hebert
Submitted 22 February 2012  |  Permalink Posted 22 February 2012

In the past months, much attention has been turned towards the involvement of miR-34 in brain health and disease. Here, the Bonini group provides compelling evidence that miR-34 is important for normal brain aging, with potential implications in neurodegenerative disease. The authors identified miR-34 to be selectively upregulated in aged (30- and 60-day-old) flies. They showed that adult miR-34 mutant (knockout) flies displayed decreased lifespan, behavioral changes, and abnormal vacuolization, indicative of loss of brain integrity. Importantly, rescue experiments reversed these defects, at least for the most part. They further identified Eip74EF, a component of steroid hormone signaling pathways, as a potential miR-34 effector gene. Interestingly, miR-34 controlled mainly Eip74EF protein, but not messenger RNA, levels. Notably, gain-of-function experiments demonstrated that miR-34 rescued ataxin-3 polyglutamine (SCA3trQ78)-induced degeneration. This effect seemed independent of Eip74EF expression modulation, which opens the door to additional miR-34 targets involved in disease...  Read more
  Submit a Comment on this News Article
Cast your vote and/or make a comment on this news article. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend the Primary Papers

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
ADNI Related Links
ADNI Data at LONI
ADNI Information
DIAN
Foundation for the NIH
AddNeuroMed
neuGRID
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad