Comment by Debomoy Lahiri and Bryan Maloney
The previously proposed LEARn (Latent Early-life Associated Regulation) pathway may explain the recently featured results from Chumley and Kahn and from Knuessel et al. regarding infection and AD. Work such as theirs that draws pathways between environmentally induced stress, such as infection, and AD (or AD-like results in model animals) significantly adds to our understanding of the etiology and prevention of AD. However, we would like to point out that the concept of AD as a “two-hit” (actually “n-hit”) disorder is not quite novel. We have previously proposed that a significant proportion of sporadic AD likely arises through latent influences of environment (Lahiri et al., 2009a). We have previously reported latent induction of expression of AD-related genes from early life environmental stress in mice (Basha et al., 2005 and
ARF related news story) and in monkeys, and presented this as the “latent early-life associated regulation” (LEARn) model of sporadic/idiopathic neuropsychiatric disease etiology (Lahiri and Maloney, 2010). Briefly, our LEARn model proposes that AD is the result of multiple “hits” against a patient. Such “hits” may include a genetic risk factor (such as ApoE4), but would also include exposure to environmental toxins, heavy metals, variations in life events such as disease exposure, levels of dietary cholesterol, or even interpersonal and sociocultural factors such as emotional stress during childhood, educational attainment, or economic status.
One of the hits is likely to be early in life (Basha et al., 2005). If such a “first hit” is lacking, further hits would usually be insufficient to cause AD. However, even a first hit would be insufficient, in and of itself, to result in AD. It would be the combined hits that lead to AD. LEARn further proposes a testable mechanism. The effects of the first hit and later hits would be latently preserved as epigenetic modifications to DNA and chromatin. Eventually, if hits have accumulated in critical regions of disease-associated genes, AD will result (Lahiri et al., 2009a; Lahiri and Maloney, 2010). Infection has already been shown to result in functional epigenetic modifications, such as changes in DNA methylation and oxidation (Katoh, 2007; Paschos and Allday, 2010; Cabrera et al., 2011; Chakraborty et al., 2011). Immune stimulation/inflammation from multiple causes is a known mechanism for alterations in DNA methylation and oxidation (Risom et al., 2005; Jawad et al., 2011; Saito et al., 2011; Weill et al., 2011). It is, therefore, reasonable to suggest that the results of Chumley and Kahn and of Kneussel et al. may likely reflect such an effect tied to AD-like conditions in model animals.
However, multiple potential causes exist for epigenetic modification. This suggests that infection may act as one likely but not necessary only possible “hit” in AD etiology, if AD is determined to be a disease related to epigenetic regulation. It should be noted that we have already explicitly drawn parallels between a possible “n-hit” model of AD (LEARn) and currently accepted oncological models (Lahiri et al., 2009a). In some ways, the results of Kneussel’s and Chumley’s groups are reminiscent of early results in the “war on cancer” that promised to attribute all or most cancer to infections. While this hypothesis did not directly pan out, it did lead to a broader oncological model based on induced changes in the epigenome, of which infection is one potential cause. Significant differences in DNA methylation have been found in several disorders, including schizophrenia, bipolar disorder, suicide following abuse during childhood, and AD, among others (Heindel et al., 2006; Jirtle and Skinner, 2007; Dosunmu et al., 2009). More specifically, comparison of DNA methylation for selected gene sequences between AD and non-AD brain samples determined disease-associated differences in DNA methylation levels (Wang et al., 2008; Mastroeni et al., 2010). Likewise, a pair of monozygotic twins had been raised together but was discordant for AD. They had differential DNA methylation in temporal neocortical neurons (Mastroeni et al., 2009a; Mastroeni et al., 2009b).
It may be tempting to dismiss these as prenatal “imprintation” effects, but it has been established that genomic DNA methylation can and does change across a large proportion of the human population (Bjornsson et al., 2008). The results reported by Alzforum certainly agree with the LEARn model, which has also proposed specific hypotheses to test environmental influences, consisting of 1) target sites within gene regulatory regions sensitive to epigenetic modification (e.g., unusually high or low concentrations of “CpG” and “GG” dimers); 2) potential critical time points in lifespan for environmental exposures (e.g., early development, midlife, etc.); and 3) environmental factors that tend to alter epigenetic markers. These elements would be combined with knowledge of candidate genes gained by linkage association studies to produce more specific, broadly applicable pathways for AD etiology.
This is, of course, not to denigrate the work recently reported in Alzforum. Confirmation of a potentially important model for AD etiology is always welcome. However, AD as a “multiple-hit” disorder with significant environmental input is an idea that has been explicitly proposed before and overlooked by the Alzforum.
References:
Basha MR, Wei W, Bakheet SA, Benitez N, Siddiqi HK, Ge YW, Lahiri DK, Zawia NH. The fetal basis of amyloidogenesis: exposure to lead and latent overexpression of amyloid precursor protein and beta-amyloid in the aging brain. J Neurosci. 2005 Jan 26;25(4):823-9. Abstract
Bjornsson HT, Sigurdsson MI, Fallin MD, Irizarry RA, Aspelund T, Cui H, Yu W, Rongione MA, Ekström TJ, Harris TB, Launer LJ, Eiriksdottir G, Leppert MF, Sapienza C, Gudnason V, Feinberg AP. Intra-individual change over time in DNA methylation with familial clustering. JAMA. 2008 Jun 25;299(24):2877-83. Abstract
Cabrera G, Barría C, Fernández C, Sepúlveda S, Valenzuela L, Kemmerling U, Galanti N. DNA repair BER pathway inhibition increases cell death caused by oxidative DNA damage in Trypanosoma cruzi. J Cell Biochem. 2011 Aug;112(8):2189-99. Abstract
Chakraborty SP, Kar Mahapatra S, Sahu SK, Das S, Tripathy S, Dash S, Pramanik P, Roy S. Internalization of Staphylococcus aureus in lymphocytes induces oxidative stress and DNA fragmentation: possible ameliorative role of nanoconjugated vancomycin. Oxid Med Cell Longev. 2011;2011:942123. Abstract
Dosunmu R, Wu J, Adwan L, Maloney B, Basha MR, McPherson CA, Harry GJ, Rice DC, Zawia NH, Lahiri DK. Lifespan profiles of Alzheimer's disease-associated genes and products in monkeys and mice. J Alzheimers Dis. 2009;18(1):211-30. Abstract
Heindel JJ, McAllister KA, Worth L, Tyson FL. Environmental epigenomics, imprinting and disease susceptibility. Epigenetics. 2006 Jan-Mar;1(1):1-6. Abstract
Jawad N, Direkze N, Leedham SJ. Inflammatory bowel disease and colon cancer. Recent Results Cancer Res. 2011;185:99-115. Abstract
Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nat Rev Genet. 2007 Apr;8(4):253-62. Abstract
Katoh M. Dysregulation of stem cell signaling network due to germline mutation, SNP, Helicobacter pylori infection, epigenetic change and genetic alteration in gastric cancer. Cancer Biol Ther. 2007 Jun;6(6):832-9. Abstract
Lahiri DK, Maloney B. The "LEARn" (Latent Early-life Associated Regulation) model integrates environmental risk factors and the developmental basis of Alzheimer's disease, and proposes remedial steps. Exp Gerontol. 2010 Apr;45(4):291-6. Abstract
Lahiri, D.K., Maloney, B. and Zawia, N.H., 2009a. The LEARn model: an epigenetic explanation for idiopathic neurobiological diseases. Mol. Psychiatry 14, 992-1003. Abstract
Mastroeni, D., Coleman, P.D., Grover, A., Sue, L., McKee, A. and Rogers, J., 2009a. Differential DNA methylation in neurons of identical twins discordant for Alzheimer’s disease. Alzheimers Dement. 5, P145.
Mastroeni D, Grover A, Delvaux E, Whiteside C, Coleman PD, Rogers J. Epigenetic changes in Alzheimer's disease: decrements in DNA methylation. Neurobiol Aging. 2010 Dec;31(12):2025-37. Abstract
Mastroeni D, McKee A, Grover A, Rogers J, Coleman PD. Epigenetic differences in cortical neurons from a pair of monozygotic twins discordant for Alzheimer's disease. PLoS One. 2009;4(8):e6617. Abstract
Paschos K, Allday MJ. Epigenetic reprogramming of host genes in viral and microbial pathogenesis. Trends Microbiol. 2010 Oct;18(10):439-47. Abstract
Risom L, Møller P, Loft S. Oxidative stress-induced DNA damage by particulate air pollution. Mutat Res. 2005 Dec 30;592(1-2):119-37. Abstract
Saito S, Kato J, Hiraoka S, Horii J, Suzuki H, Higashi R, Kaji E, Kondo Y, Yamamoto K. DNA methylation of colon mucosa in ulcerative colitis patients: correlation with inflammatory status. Inflamm Bowel Dis. 2011 Sep;17(9):1955-65. Abstract
Wang SC, Oelze B, Schumacher A. Age-specific epigenetic drift in late-onset Alzheimer's disease. PLoS One. 2008;3(7):e2698. Abstract
Weill FS, Cela EM, Ferrari A, Paz ML, Leoni J, Gonzalez Maglio DH. Skin exposure to chronic but not acute UV radiation affects peripheral T-cell function. J Toxicol Environ Health A. 2011 Jan;74(13):838-47. Abstract
View all comments by Debomoy Lahiri