Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: News
News
News Search  
Identification of New Gene Boosts ALS Research
3 October 2001. Most cases of amyotrophic lateral sclerosis (ALS) have no familial history that could help researchers home in on genetic causes. About 10 percent of cases are inherited, from which five potential ALS genes have been mapped to independent chromosome regions. However, only one ALS gene, encoding a Cu-Zn superoxide dismutase (SOD1), has been identified to date, and since its discovery in 1993 (Rosen et al) progress in understanding its role in the disease has been slow.

Now a new gene has burst on the scene. Two international collaborations-one comprising scientists from the U.S., Saudi Arabia and Tunisia and led by Teepu Siddique, Northwestern University, and the other led by Joh-E Ikeda, Tokai University, Japan-report in this month's Nature Genetics that they have independently identified the gene responsible for ALS2, a juvenile-onset, familial form of the disease.

Both groups have localized the gene on chromosome 2. They show that it undergoes alternative splicing, resulting in a short and a long transcript, both widely expressed. The function of the protein is unknown, though it contains several guanine-nucleotide exchange factor domains, and regions that may be involved in membrane attachment and phosphatidylinositol signaling.

The disease phenotypes result from single or double-base pair deletion mutations, which cause truncating frameshifts. The papers report different single base-pair deletions in exon three of the gene, which reduce the protein to 49 amino acids. Ikeda's group located a double base-pair deletion in exon five, shortening the protein to 545 amino acids, and Siddique's group found a two base-pair deletion in exon nine, causing premature termination after 645 amino acids. This latter mutation occurs in families affected with juvenile primary lateral sclerosis (JPLS), providing the first molecular link between this disease, which affects only upper motor neurons, and ALS.

"This is an important advance for the field of ALS research," states Pamela Shaw of the University of Sheffield in an accompanying News & Views article. The loss of function associated with these mutations should be more amenable to study than the gain of function associated with the SOD1 mutations. "The field of ALS research is therefore at the start of a new endeavor," Shaw adds.-Tom Fagan.

References:
Hadano S, Hand CK, Osuga H, Yanagisawa Y, Otomo A, Devon RS, Miyamoto N, Showguchi-Miyata J, Okada Y, Singaraja R, Figlewicz DA, Kwiatkowski T, Hosler BA, Sagie T, Skaug J, Nasir J, Brown RH Jr, Scherer SW, Rouleau GA, Hayden MR, Ikeda JE. A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nat Genet. 2001 Oct;29(2):166-73. Abstract

Yang Y, Hentati A, Deng HX, Dabbagh O, Sasaki T, Hirano M, Hung WY, Ouahchi K, Yan J, Azim AC, Cole N, Gascon G, Yagmour A, Ben-Hamida M, Pericak-Vance M, Hentati F, Siddique T. The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis. Nat Genet 2001 Oct;29(2):160-5. Abstract

Shaw PJ. Genetic inroads in familial ALS. Nat Genet 2001 Oct;29(2):103-4. Abstract

 
  Submit a Comment on this News Article
Cast your vote and/or make a comment on this news article. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend the Primary Papers

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
ADNI Related Links
ADNI Data at LONI
ADNI Information
DIAN
Foundation for the NIH
AddNeuroMed
neuGRID
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad