Get Newsletter
Alzheimer Research Forum - Networking for a Cure Alzheimer Research Forum - Networking for a CureAlzheimer Research Forum - Networking for a Cure
  
What's New HomeContact UsHow to CiteGet NewsletterBecome a MemberLogin          
Papers of the Week
Current Papers
ARF Recommends
Milestone Papers
Search All Papers
Search Comments
News
Research News
Drug News
Conference News
Research
AD Hypotheses
  AlzSWAN
  Current Hypotheses
  Hypothesis Factory
Forums
  Live Discussions
  Virtual Conferences
  Interviews
Enabling Technologies
  Workshops
  Research Tools
Compendia
  AlzGene
  AlzRisk
  Antibodies
  Biomarkers
  Mutations
  Protocols
  Research Models
  Video Gallery
Resources
  Bulletin Boards
  Conference Calendar
  Grants
  Jobs
Early-Onset Familial AD
Overview
Diagnosis/Genetics
Research
News
Profiles
Clinics
Drug Development
Companies
Tutorial
Drugs in Clinical Trials
Disease Management
About Alzheimer's
  FAQs
Diagnosis
  Clinical Guidelines
  Tests
  Brain Banks
Treatment
  Drugs and Therapies
Caregiving
  Patient Care
  Support Directory
  AD Experiences
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
ARF Team
ARF Awards
Advisory Board
Sponsors
Partnerships
Fan Mail
Support Us
Return to Top
Home: News
News
News Search  
Mend the Gap: Pericytes Form Core of Spinal Cord Scars
8 July 2011. When tissue tears, the body fills in the gap with a scar. In the case of the spinal cord, that so-called “glial scar” is made mainly of astrocytes—or so neuroscientists believed. According to a paper in today’s Science, pericyte-enwrapping blood vessels near a spinal lesion will differentiate and move toward the injury, forming the core of an astrocyte-coated scar. Without pericytes, the wound is likely to remain a gaping hole.

“The pericyte response is dramatic,” wrote study author Christian Göritz of the Karolinska Institute in Stockholm, Sweden, in an e-mail to ARF. “Many cell types respond in one or another way to injury, but the pericyte response is by far the strongest I have ever seen.” Göritz led the study with senior author Jonas Frisén.

Scars are good, in that they fill in a wound with connective tissue. But they also put a damper on regeneration; in the spinal cord, scars block axons attempting to grow across the lesion. “It will be interesting to further investigate the role of these pericytes…to see the extent to which they contribute to axon regenerative failure in the central nervous system,” commented Ben Barres of Stanford University in Palo Alto, California, in an e-mail to ARF.

Pericytes surround blood vessels and help stabilize them. They form an integral part of the blood-brain barrier. In the central nervous system (CNS), these cells are multipotent, with the ability to differentiate into neural and glial cell types as well as connective tissue such as fibroblasts (Dore-Duffy et al., 2006; Dore-Duffy, 2008; Dore-Duffy et al., 2011). They are found throughout the body, and participate in kidney and liver fibrosis (Pinzani et al., 1992; Lin et al., 2008; Humphreys et al., 2010), as well as skin scarring (Sundberg et al., 1996). The role of pericytes in the spinal cord, however, has been “mysterious,” Barres wrote.

Göritz and Frisén have been studying injury response in several cell types (Meletis et al., 2008; Barnabé-Heider et al., 2010), and in the current study, turned their fate-mapping attention to pericytes. Göritz used Cre recombinase to selectively label the pericytes of mice—specifically, a subclass called perivascular cells—with yellow fluorescent protein (YFP). These pericytes, as well as any of their progeny, would glow yellow, allowing the researchers to track them and estimate their role in scarring. However, the markers used to identify pericytes were insufficient to convince Paula Dore-Duffy of Wayne State University School of Medicine in Detroit, Michigan; she suggested that other cell types might have been labeled, too. If so, then cell types besides pericytes could be contributing to the scar’s core.

After spinal cord lesion, the pericytes proliferated. YFP-labeled cells expanded to more than 25 times their normal numbers within nine days of injury. The descendants of the YFP-tagged cells migrated to the injury site and built an extracellular matrix there.

The core of the scar is traditionally considered to be connective tissue such as fibroblasts, Göritz noted, but the identity of the pericyte-descendant, scar-forming cells is uncertain. More work must be done to determine if the migrating pericytes stay pericyte-like, morph into fibroblasts, or become another cell type, he wrote.

The pericyte-derived cells were the first cells to reach the injury site. Astrocytes also proliferated, but their doubling pales in comparison to the explosion of the pericyte lineage. While astrocytes outnumber pericytes 10 to one in a healthy spinal cord, there were twice as many YFP-tagged cells as astrocytes in the damaged area. Together, the cell types formed a scar with a pericyte-derived center and astrocyte shell.

To confirm the importance of pericytes in scar formation, the researchers modified their mice further. In the new line, the activation of Cre not only turned on YFP in the pericytes, but it also disabled cell division by removing all ras genes. Göritz performed spinal cord hemisections and examined the injury sites 18 weeks later. Compared to control mice with normal pericyte cell division, the modified mice had fewer connective tissue cells in the core of the scar. In one-third of the ras-free mice, the injury did not even seal.

Pericytes also dissociate from blood vessels after traumatic brain injury and stroke, as well as in cases of hypoxia and in a mouse model of multiple sclerosis, Dore-Duffy said, although the mechanism of the migration is unclear (Dore-Duffy et al., 1999; Takahashi et al., 1997; Dore-Duffy et al., 2000; Dore-Duffy and Lamanna, 2007). The study authors suggest that pericyte scar formation may be a general mechanism of wound repair throughout the central nervous system, and perhaps in other organs as well. The next step, Göritz wrote, will be to find ways to modulate pericyte activity to minimize the downsides of scarring.

Pericytes might also play a role in neurodegeneration, Dore-Duffy suggested in an e-mail to ARF. A slowing of vascular activity comes with age, she noted, and pericytes are compromised in conjunction with vascular damage in Alzheimer’s disease. Pericytes contribute to the structure of the vascular system, and a poorly functioning vasculature in amyotrophic lateral sclerosis or multiple sclerosis might prevent neurons from getting the energy supply they need, she speculated.—Amber Dance.

Reference:
Göritz C, Dias DO, Tomilin N, Barbacid M, Shupliakov O, Frisén J. A pericyte origin of spinal cord scar tissue. Science. 2011 Jul 8;333:238-42. Abstract

 
Comments on News and Primary Papers
  Primary Papers: A pericyte origin of spinal cord scar tissue.

Comment by:  Urban Lendahl
Submitted 9 July 2011  |  Permalink Posted 9 July 2011

In this paper in Science, Jonas Frisén and colleagues have identified a novel, major cell population in the scar that forms after spinal cord injury, and that has commonly been referred to as the "glial scar." The authors convincingly show that pericytes, normally associated with the vasculature, constitute a large fraction in the scar. This was demonstrated by an elegant cell lineage-tracing experiment in mice. The discovery is not only important for obtaining better insights into which cells populate the scar, but also opens new perspectives for future therapies, as pericytes are controlled by key signaling pathways that are druggable. In this paper, the authors also show that modulation of pericyte recruitment may have effects on the motor deficits observed after the injury, which suggests that efforts to control pericyte recruitment and function may be worthwhile in the quest for future therapies.

View all comments by Urban Lendahl
  Submit a Comment on this News Article
Cast your vote and/or make a comment on this news article. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory:
*Login Email Address  
*Password    Minimum of 8 characters
*Confirm Password  
Stay signed in?  

I recommend the Primary Papers

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


*Enter the verification code you see in the picture below:


This helps Alzforum prevent automated registrations.

Terms and Conditions of Use:Printable Version

By clicking on the 'I accept' below, you are agreeing to the Terms and Conditions of Use above.
Print this page
Email this page
Alzforum News
Papers of the Week
Text size
Share & Bookmark
ADNI Related Links
ADNI Data at LONI
ADNI Information
DIAN
Foundation for the NIH
AddNeuroMed
neuGRID
Desperately

Antibodies
Cell Lines
Collaborators
Papers
Research Participants
Copyright © 1996-2013 Alzheimer Research Forum Terms of Use How to Cite Privacy Policy Disclaimer Disclosure Copyright
wma logoadadad